Nonlinear Dynamics

, Volume 77, Issue 3, pp 655–666 | Cite as

Partially saturated nonlinear control for gantry cranes with hardware experiments

Original Paper


Gantry cranes are typically underactuated nonlinear dynamic systems with highly coupled system states. We propose in this paper a partially saturated nonlinear controller for gantry crane systems by converting the crane model into an objective (i.e., desired closed-loop) system. The presented scheme guarantees “soft” cart start by introducing a smooth saturated function into the controller. In particular, we first establish an objective system with desired signal convergence and stability performance. Then, on the basis of the objective dynamics’ structure, we derive a partially saturated control law straightforwardly by solving one partial differential equation, without necessity of performing partial feedback linearization operations to the original crane model. The convergence and stability performance of the objective system is assured with Lyapunov-based methods. In order to verify the practical control performance of the proposed method, we implement both numerical simulation and hardware experiments to illustrate that the new method achieves increased performance with respect to existing methods, with lessened control efforts.


Nonlinear control Gantry cranes Objective system  Partially saturated 



The authors would like to express their sincere thanks to the reviewers and the editor for the valuable suggestions that have greatly improved the quality of the paper. They also greatly acknowledge the financial supports from the National Science and Technology Pillar Program of China (Grant No. 2013BAF07B03), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61325017), the National Natural Science Foundation of China (Grant No. 11372144), and the Academic Award for Doctoral Students from the Ministry of Education of China (Grant No. (190)H0511009).


  1. 1.
    Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Li, Y., Liu, Y.: Real-time tip-over prevention and path following control for redundant nonholonomic mobile modular manipulators via fuzzy and neural-fuzzy approaches. ASME J. Dyn. Syst. Meas. Control 128(4), 753–764 (2006)CrossRefGoogle Scholar
  3. 3.
    Liu, Y., Li, Y.: Dynamic modeling and adaptive neural-fuzzy control for nonholonomic mobile manipulators moving on a slope. Int. J. Control Autom. Syst. 4(2), 197–203 (2006)Google Scholar
  4. 4.
    Ouyang, H., Uchiyama, N., Sano, S.: Anti-sway control of rotary crane only by horizontal boom motion. In: Proceedings of the 2010 IEEE International Conference on Control Applications, Yokohama, Japan, pp. 591–595 (2010)Google Scholar
  5. 5.
    Xin, X., She, J., Liu, Y.: A unified solution to swing-up control for n-link planar robot with single passive joint based on virtual composite links and passivity. Nonlinear Dyn. 67(2), 909–923 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Kuchler, S., Mahl, T., Neupert, J., Schneider, K., Sawodny, O.: Active control for an offshore crane using prediction of the vessel’s motion. IEEE/ASME Trans. Mechatron. 16(2), 297–309 (2011)CrossRefGoogle Scholar
  7. 7.
    She, J.H., Zhang, A., Lai, X., Wu, M.: Global stabilization of 2-DOF underactuated mechanical systems: an equivalent-input-disturbance approach. Nonlinear Dyn. 69(1–2), 495–509 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Li, E., Liang, Z.Z., Hou, Z.G., Tan, M.: Energy-based balance control approach to the ball and beam system. Int. J. Control 82(6), 981–992 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ibañez, C. A., García, J. C. M., López, A. S.: Bounded control based on saturation functions of nonlinear under-actuated mechanical systems: the cart-pendulum system case. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, USA, pp. 1759–1764 (2011)Google Scholar
  10. 10.
    Gao, B.T., Xu, J., Zhao, J.G., Huang, X.L.: Stabilizing control of an underactuated 2-dimensional TORA with only rotor angle measurement. Asian J. Control 15(3), 1–12 (2013)MathSciNetGoogle Scholar
  11. 11.
    Xin, X., She, J.H., Yamasaki, T., Liu, Y.: Swing-up control based on virtual composite links for n-link underactuated robot with passive first joint. Automatica 45(9), 1986–1994 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Piazzi, A., Visioli, A.: Optimal dynamic-inversion-based control of an overhead crane. IEE Proc. Control Theory Appl. Part D 149(5), 405–411 (2002)CrossRefGoogle Scholar
  13. 13.
    Van den Broeck, L., Diehl, M., Swevers, J.: A model predictive control approach for time optimal point-to-point motion control. Mechatronics 21(7), 1203–1212 (2011)CrossRefGoogle Scholar
  14. 14.
    Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Phase plane analysis based motion planning for underactuated overhead cranes. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3483–3488 (2011)Google Scholar
  15. 15.
    Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory Appl. 6(10), 1410–1423 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Khalid, A., Huey, J., Singhose, W., Lawrence, J., Frakes, D.: Human operator performance testing using an input-shaped bridge crane. ASME J. Dyn. Syst. Meas. Control 128(4), 835–841 (2006)CrossRefGoogle Scholar
  17. 17.
    Garrido, S., Abderrahim, M., Giménez, A., Diez, R., Balaguer, C.: Anti-swinging input shaping control of an automatic construction crane. IEEE Trans. Autom. Sci. Eng. 5(3), 549–557 (2008)CrossRefGoogle Scholar
  18. 18.
    Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34(3–4), 347–358 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Solihin, M.I., Wahyudi, Legowo, A.: Fuzzy-tuned PID anti-swing control of automatic gantry crane. J. Vib. Control 16(1), 127–145 (2010)CrossRefMATHGoogle Scholar
  20. 20.
    Fang, Y., Zergeroglu, E., Dawson, D.M., Dixon, W.E.: Nonlinear coupling control laws for an overhead crane system. In: Proceedings of the IEEE Conference on Control Applications, Mexico City, Mexico, pp. 639–644 (2001)Google Scholar
  21. 21.
    Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Trans. Mechatron. 8(3), 418–423 (2003)CrossRefGoogle Scholar
  22. 22.
    Sun, N., Fang, Y., Zhang, Y., Ma, B.: A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Trans. Mechatron. 17(1), 166–173 (2012)CrossRefGoogle Scholar
  23. 23.
    Sun, N., Fang, Y.: An efficient online trajectory generating method for underactuated crane systems. Int. J. Robust Nonlinear Control. doi:  10.1002/rnc.2953 (in press)
  24. 24.
    Liu, R., Li, S., Ding, S.: Nested saturation control for overhead crane systems. Trans. Inst. Meas. Control 34(7), 862–875 (2012)CrossRefGoogle Scholar
  25. 25.
    Burg, T., Dawson, D., Rahn, C., Rhodes, W.: Nonlinear control of an overhead crane via the saturating control approach of Teel. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, USA, pp. 3155–3160 (1996)Google Scholar
  26. 26.
    Wang, W., Yi, J., Zhao, D., Liu, D.: Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc. Control Theory Appl. Part D 151(6), 683–690 (2004) Google Scholar
  27. 27.
    Bartolini, G., Pisano, A., Usai, E.: Second-order sliding-mode control of container cranes. Automatica 38(10), 1783–1790 (2002)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Ngo, Q.H., Hong, K.-S.: Adaptive sliding mode control of container cranes. IET Control Theory Appl. 6(5), 662–668 (2012)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Lee, H., Liang, Y., Segura, D.: A sliding-mode antiswing trajectorycontrol for overhead cranes with high-speed load hoisting. ASME J. Dyn. Syst. Meas. Control 128(4), 842–845 (2006)CrossRefGoogle Scholar
  30. 30.
    Park, M.S., Chwa, D., Hong, S.K.: Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans. Ind. Electron. 55(11), 3972–3984 (2008)CrossRefGoogle Scholar
  31. 31.
    Le, T.A., Kim, G.-H., Kim, K.Y., Lee, S.-G.: Partial feedback linearization control of overhead cranes with varying cable lengths. Int. J. Precis. Eng. Manuf. 13(4), 501–507 (2012)CrossRefGoogle Scholar
  32. 32.
    Liu, D., Guo, W., Yi, J.: Dynamics and GA-based stable control for a class of underactuated mechanical systems. Int. J. Control Autom. Syst. 6(1), 35–43 (2008)Google Scholar
  33. 33.
    Toxqui, R., Yu, W., Li, X.: Anti-swing control for overhead cranes with neural compensation. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, pp. 9447–9453 (2006)Google Scholar
  34. 34.
    Chang, C.: Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans. Ind. Inf. 3(2), 164–172 (2007)CrossRefGoogle Scholar
  35. 35.
    Ma, B., Fang, Y., Zhang, Y.: Switching-based emergency braking control for an overhead crane system. IET Control Theory Appl. 4(9), 1739–1747 (2010)CrossRefGoogle Scholar
  36. 36.
    Hu, G., Makkar, C., Dixon, W.E.: Energy-based nonlinear control of underactuated Euler–Lagrange systems subject to impacts. IEEE Trans. Autom. Control 52(9), 1742–1748 (2007)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Ortega, R., Spong, M.W., Gómez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)CrossRefGoogle Scholar
  38. 38.
    Makkar, C., Hu, G., Sawyer, W.G., Dixon, W.E.: Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction. IEEE Trans. Autom. Control 52(10), 1988–1994 (2007)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Robotics and Automatic Information SystemNankai UniversityTianjinChina

Personalised recommendations