Nonlinear Dynamics

, Volume 77, Issue 3, pp 545–552 | Cite as

Controllable rogue waves in coupled nonlinear Schrödinger equations with varying potentials and nonlinearities

  • Xueping Cheng
  • Jianyong Wang
  • Jinyu Li
Original Paper


Exact rogue wave solutions, including the first-order rogue wave solutions and the second-order ones, are constructed for the system of two coupled nonlinear Schrödinger (NLS) equations with varying potentials and nonlinearities. The method employed in this paper is the similarity transformation, which allows us to map the inhomogeneous coupled NLS equations with variable coefficients into the integrable Manakov system, whose explicit solutions have been well studied before. The result shows that the rogue wavelike solutions obtained by this transformation are controllable. Concretely, we illustrate how to control the trajectories of wave centers and the evolutions of wave peaks, and analyze the dynamic behaviors of the rogue wavelike solutions.


Rogue wave solution Coupled nonlinear Schrödinger equations Similarity transformation 



One of the authors (Cheng) would like to thank Prof. Sen-yue Lou for many useful discussions. This work is supported by the National Natural Science Foundation of China (No. 11175092 and No. 11104248) and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ12A01008 and No. Y1100088.


  1. 1.
    Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Soviet Phys. JETP 34(1), 62–69 (1972)MathSciNetGoogle Scholar
  2. 2.
    Ryskin, N.M.: Schrödinger bound nonlinear equations for the description of multifrequency wave packages distribution in nonlinear medium with dispersion. Soviet Phys. JETP 79(5), 833–834 (1994)Google Scholar
  3. 3.
    Menyuk, C.R.: Pulse propagation in an elliptically birefringent Kerr medium. IEEE J. Quantum Electron. 25(12), 2674–2682 (1989)CrossRefGoogle Scholar
  4. 4.
    Yan, Z.Y., Konotop, V.V., Akhmediev, N.: Three-dimensional rogue waves in nonstationary parabolic potentials. Phys. Rev. E 82(3), 036610 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bashkin, E.P., Vagov, A.V.: Instability and stratification of a two-component Bose–Einstein condensate in a trapped ultracold gas. Phys. Rev. B 56(10), 6207–6212 (1997)CrossRefGoogle Scholar
  6. 6.
    Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue wave. Annu. Rev. Fluid Mech. 40, 287–310 (2008)CrossRefGoogle Scholar
  7. 7.
    Manakov, S.V.: On the theory of two-dimensional stationary self focussing of electromagnetic waves. Soviet Phys. JETP 38(2), 248–253 (1974)MathSciNetGoogle Scholar
  8. 8.
    Zakharov, V.E., Schulman, E.I.: To the integrability of the system of two coupled nonlinear Schrödinger equations. Physica D 4(2), 270–274 (1982)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ohta, Y., Wang, D.S., Yang, J.K.: General N-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127(4), 345–371 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Radhakrishnan, R., Lakshmanan, M.: Bright and dark soliton solutions to coupled nonlinear Schrödinger equations. J. Phys. A 28(9), 2683–2692 (1995)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Meng, G.Q., Gao, Y.T., Yu, X., Shen, Y.J., Qin, Y.: Multi-soliton solutions for the coupled nonlinear Schröinger-type equations. Nonlinear Dyn. 70(1), 609–617 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Geng, X.G., Lv, Y.Y.: Darboux transformation for an integrable generalization of the nonlinear Schröinger equation. Nonlinear Dyn. 69(4), 1621–1630 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kivshar, Y.S., Agrawal, G.P.: Optical solitons: from fibers to photonic crystals, vol. 278. Academic Press, San Diego (2003)Google Scholar
  14. 14.
    Hioe, F.T.: Solitary waves for two and three coupled nonlinear Schrödinger equations. Phys. Rev. E 58(5), 6700–6707 (1998)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Guo, B.L., Ling, L.M.: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28(11), 110202 (2011)CrossRefGoogle Scholar
  16. 16.
    Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375(48), 4274–4279 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Petrović, N., Zahreddine, H.: Exact traveling wave solutions to coupled generalized nonlinear Schrödinger equations. Phys. Scr. T 149, 014039 (2012)CrossRefGoogle Scholar
  18. 18.
    Kivshar, Y.S., Luther-Davies, B.: Optical dark solitons: physics and applications. Phys. Rep. 298(2–3), 81–155 (1998)CrossRefGoogle Scholar
  19. 19.
    Leble, S., Reichel, B.: Coupled nonlinear Schrödinger equations in optic fibers theory. Eur. Phys. J. Spec. Topics 173, 5–55 (2009)CrossRefGoogle Scholar
  20. 20.
    Manganarot, N., Parker, D.F.: Similarity reductions for variable-coefficient coupled nonlinear Schrödinger equations. J. Phys. A 26(16), 4093–4106 (1993)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhong, W.P., Belić, M.: Traveling wave and soliton solutions of coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients. Phys. Rev. E 82(4), 047601 (2010)CrossRefGoogle Scholar
  22. 22.
    Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51(2), 023510 (2010)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Xue, Y.S., Tian, B., Zhong, H.Q., Liu, W.J., Li, L.L., Qi, F.H., Zhan, Y.: Darboux transformation and soliton solutions for inhomogeneous coupled nonlinear Schrödinger equations with symbolic computation. Commun. Theory Phys. 52(5), 888–896 (2009)CrossRefMATHGoogle Scholar
  24. 24.
    Xu, S.W., He, J.S., Wang, L.H.: Two kinds of rogue waves of the general nonlinear Schrödinger equation with derivative. Eur. Phys. Lett. 97(3), 30007 (2012)CrossRefGoogle Scholar
  25. 25.
    Riboli, F., Modugno, M.: Topology of the ground state of two interacting Bose–Einstein condensates. Phys. Rev. A 65(6), 063614 (2002)CrossRefGoogle Scholar
  26. 26.
    Busch, Th, Cirac, J.I., Pérez-García, V.M., Zoller, P.: Stability and collective excitations of a two-component Bose–Einstein condensed gas: a moment approach. Phys. Rev. A 56(4), 2978–2983 (1997)CrossRefGoogle Scholar
  27. 27.
    Lou, S.Y., Chen, C.L., Tang, X.Y.: (2+1)-dimensional (M+N)-component AKNS system: Painlevé integrability, infinitely many symmetries, similarity reductions and exact solutions. J. Math. Phys. 43(8), 4078–4109 (2002)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Gupta, R.K., Bansal, A.: Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients, Nonlinear Dyn. 71(1–2), 1–12 (2013)Google Scholar
  29. 29.
    Yang, Z.Y., Zhao, L.C., Zhang, T., Li, Y.H., Yue, R.H.: The dynamics of nonautonomous soliton inside planar graded-index waveguide with distributed coefficients. Opt. Commun. 283(19), 3768–3772 (2010)CrossRefGoogle Scholar
  30. 30.
    Yang, Z.Y., Zhao, L.C., Zhang, T., Feng, X.Q., Yue, R.H.: Dynamics of a nonautonomous soliton in a generalized nonlinear Schrödinger equation. Phys. Rev. E 83(6), 066602 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhysicsZhejiang Ocean UniversityZhoushan China
  2. 2.Department of PhysicsShanghai Jiao Tong UniversityShanghai China

Personalised recommendations