Nonlinear Dynamics

, Volume 76, Issue 3, pp 1761–1767 | Cite as

Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control

Original Paper


This paper proposes a novel robust fractional-order sliding mode approach for the synchronization of two fractional-order chaotic systems in the presence of system parameter uncertain and external disturbance. An adaptive sliding mode controller is constructed resorted to the designed fractional integral type sliding surface. Based on the Lyapunov stability theorem, the stability of the closed error system is proved. Finally, a numerical simulation is performed to illustrate the effectiveness of the proposed method.


Chaos Synchronization Fractional calculus Sliding mode control 



This study was supported by National Natural Science Foundation of China under Grants 60974051, 61273144, Natural Science Foundation of Beijing under Grant 4122071, Fundamental Research Funds for the Central Universities under Grant 12MS143, the Construction Project from Beijing Municipal Commission of Education, and the Beijing Foundation of supporting for the central University in Beijing.

Conflict of interest

The authors declare that they have no competing interest.


  1. 1.
    Sabatier, J., Poullain, S., Latteux, P., Thomas, J.L., Oustaloup, A.: Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench. Nonlinear Dyn. 38(1–4), 383–400 (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)CrossRefGoogle Scholar
  3. 3.
    Jesus, I.S., Machado, J., Barbosa, R.S.: Control of a heat diffusion system through a fractional order nonlinear algorithm. Comput. Math. Appl. 59(5), 1687–1694 (2010)Google Scholar
  4. 4.
    Ortigueira, M.D., Machado, J.: Fractional calculus applications in signals and systems. Signal Process. 86(10), 2503–2504 (2006)CrossRefMATHGoogle Scholar
  5. 5.
    Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)CrossRefGoogle Scholar
  6. 6.
    El-Sayed, A., El-Mesiry, A., El-Saka, H.: On the fractional-order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ahmed, E., Elgazzar, A.: On fractional order differential equations model for nonlocal epidemics. Physica A 379(2), 607–614 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003)CrossRefGoogle Scholar
  9. 9.
    Hartley, T.T., Lorenzo, C.F., Killory Qammer, H.: Chaos in a fractional order Chua’s system. Circuits Syst. I 42(8), 485–490 (1995)CrossRefGoogle Scholar
  10. 10.
    Deng, W., Li, C.: Chaos synchronization of the fractional Lü system. Physica A 353, 61–72 (2005)CrossRefGoogle Scholar
  11. 11.
    Ahmad, W.M., Sprott, J.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16(2), 339–351 (2003)CrossRefMATHGoogle Scholar
  12. 12.
    Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gao, X., Yu, J.: Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos Solitons Fractals 24(4), 1097–1104 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Li, C., Deng, W., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360(2), 171–185 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Matignon, D.: Stability properties for generalized fractional differential systems. In: ESAIM: proceedings , pp. 145–158. EDP Sciences (1998)Google Scholar
  17. 17.
    Wang, J., Zhang, Y.: Designing synchronization schemes for chaotic fractional-order unified systems. Chaos Solitons Fractals 30(5), 1265–1272 (2006)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Yu, Y., Li, H.-X.: The synchronization of fractional-order Rössler hyperchaotic systems. Physica A 387(5), 1393–1403 (2008)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Pan, L., Zhou, W., Zhou, L., Sun, K.: Chaos synchronization between two different fractional-order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2628–2640 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387(1), 57–70 (2008)CrossRefGoogle Scholar
  21. 21.
    Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3536–3546 (2010)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Hu, J., Han, Y., Zhao, L.: Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15(1), 115–123 (2010)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Hosseinnia, S., Ghaderi, R., Momani, S., Mahmoudian, M., Ranjbar, N.A.: Sliding mode synchronization of an uncertain fractional order chaotic system. Comput. Math. Appl. 59(5), 1637–1643 (2010)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Pan, L., Zhou, W., Li, D., Fang, Ja: Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control. Commun. Nonlinear Sci. Numer. Simul. 15(12), 3754–3762 (2010)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Asheghan, M.M., Hamidi Beheshti, M.T., Tavazoei, M.S.: Robust synchronization of perturbed Chen’s fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(2), 1044–1051 (2011) Google Scholar
  26. 26.
    Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2670–2681 (2012)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13(5), 529–539 (1967)CrossRefGoogle Scholar
  28. 28.
    Utkin, V.I.: Sliding Modes in Control and Optimization, vol. 116. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  29. 29.
    Yau, H.T., Yan, J.J.: Design of sliding mode controller for Lorenz chaotic system with nonlinear input. Chaos Solitons Fractals 19(4), 891–898 (2004)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBaodingPeople’s Republic of China

Personalised recommendations