Nonlinear Dynamics

, Volume 76, Issue 2, pp 1355–1363 | Cite as

An extended image encryption using chaotic coupled map and S-box transformation

  • Iqtadar Hussain
  • Muhammad Asif Gondal
Original Paper


This manuscript is about a modified image encryption algorithm based on coupled map lattices and substitution box transformation. The places of the pixels of image are mix up by using chaotic tent map and after that employing delayed coupled map lattices and S-box transformation to puzzle the association between the original image and the encrypted image. The simulation results validate that the propose technique possesses better strength for realistic image encryption.


Image encryption S-box transformation chaotic maps 


  1. 1.
    Schneier, B.: Applied Cryptography-Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York (1996)MATHGoogle Scholar
  2. 2.
    Daemen, J., Sand, B., Rijmen, V.: The Design of Rijndael: AES—the Advanced Encryption Standard. Springer, Berlin (2002)CrossRefGoogle Scholar
  3. 3.
    Shanon, C.E.: Communication theory of secrecy systems. Bell. Syst. Tech. J. 28(4), 656–715 (1949)CrossRefGoogle Scholar
  4. 4.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurcat. Chaos 8(6), 1259–1284 (1998)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vision Comput. 24, 926–934 (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fract. 21, 749–761 (2004)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Pisarschik, A.N.: Encryption and decryption of images with chaotic map lattices. Chaos 16, 033118 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Guan, Z.H., Huang, F., Guan, W.: Chaos based image encryption algorithm. Phys. Lett. A 346, 153–157 (2005)CrossRefMATHGoogle Scholar
  9. 9.
    Wong, K., Kwok, B., Law, W.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372, 2645–2652 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Lian, S.: Efficient image or video encryption based on spatiotemporal chaos system. Chaos Solitons Fract. 40, 2509–2519 (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Pisarchika, A.N., Zanin, M.: Image encryption with chaotically coupled chaotic maps. Physica D 237, 2638–48 (2008)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Alvarez, G., Li, S.: some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(8), 2129–2151 (2006)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Masuda, N., Aihara, K.: Cryptosystems with discretized chaotic maps. IEEE Trans. Circ. Syst. 49, 28–40 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Wang, Y., Wong, K., Liao, X., Xiang, T., Chen, G.: A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fract. 41, 1773–1783 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Patidar, Vinod, Pareek, N.K., Sud, K.K.: A new substitution–diffusion based image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simulat. 14, 3056–3075 (2009)CrossRefGoogle Scholar
  16. 16.
    Xiang, T., Wong, K., Liao, X.: Selective image encryption using a spatiotemporal chaotic system. Chaos 17, 023115 (2007)CrossRefGoogle Scholar
  17. 17.
    Yu, W., Cao, J.: Cryptography based on delayed chaotic neural networks. Phys. Lett. A 356, 333–338 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Li, P., Li, Z., Halang, W., Chen, G.: A stream cipher based on a spatiotemporal chaotic system. Chaos Solitons Fract. 32, 1867–1876 (2007)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Wang, S., Kuang, J., Li, J., Luo, Y., Lu, H., Hu, G.: Chaos-based secure communications in a large community. Phys. Rev. E 66, 065202 (2002)CrossRefGoogle Scholar
  20. 20.
    Wang, Z.D., Liu, Y., Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays. Phys. Lett. A 345, 299–308 (2005)CrossRefMATHGoogle Scholar
  21. 21.
    Wang, Z.D., Liu, Y., Fraser, K., Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. A 354, 288–297 (2006)CrossRefMATHGoogle Scholar
  22. 22.
    Tang, Y., Fang, J.A.: Adaptive synchronization in an array of chaotic neural networks with mixed delays and jumping stochastically hybrid coupling. Commun. Nonlinear Sci. Numer. Simulat. 14, 3615–3628 (2009)Google Scholar
  23. 23.
    Tang, Y., Fang, J.A.: Robust synchronization in an array of fuzzy delayed cellular neural networks with stochastically hybrid coupling. Neurocomputing 72, 3253–3262 (2009) Google Scholar
  24. 24.
    Konishi, K., Kokame, H.: Time-delay-induced amplitude death in chaotic map lattices and its avoiding control. Phys. Lett. A 366, 585–590 (2007)CrossRefGoogle Scholar
  25. 25.
    Mart Arturo, C., Masoller, C.: Synchronization of globally coupled non-identical maps with inhomogeneous delayed interactions. Physica A 342, 344–350 (2004)CrossRefGoogle Scholar
  26. 26.
    Wang, Z.D., Lauria, S., Fang, J., Liu, X.: Exponential stability of uncertain stochastic neural networks with mixed time-delays. Chaos Solitons Fract. 32, 62–72 (2007)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Tang, Y., Fang, J., Xia, M., Yu, D.: Delay-distribution-dependent stability of stochastic discrete-time neural networks with randomly mixed time-varying delays. Neurocomputing 72, 3830–8 (2009)CrossRefGoogle Scholar
  28. 28.
    Yang, T., Zidong, W., Jian-an, F.: Image encryption using chaotic coupled map lattices with time-varying delays. Commun. Nonlinear Sci. Numer. Simulat. 15, 2456–2468 (2010)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Sciences and HumanitiesNational University of Computer and Emerging SciencesIslamabadPakistan
  2. 2.Department of Mathematics and SciencesDhofar UniversitySalalahOman

Personalised recommendations