Advertisement

Nonlinear Dynamics

, Volume 76, Issue 2, pp 1133–1140 | Cite as

Finite-time tracking control for a class of high-order nonlinear systems and its applications

  • Yingying Cheng
  • Haibo Du
  • Yigang He
  • Ruting Jia
Original Paper

Abstract

This study investigates the problem of finite-time tracking control for a class of high-order nonlinear systems. Due to the existence of uncertain time-varying control coefficient and unknown nonlinear perturbations in the nonlinear dynamics, the existing finite-time control results cannot solve the finite-time tracking problem for this kind of nonlinear systems. Based on the technique of adding a power integrator a variable structure control method is proposed. Under the proposed control law, it is shown that the reference signal can be tracked in a finite time. As an application of the proposed theoretic results, the problem of finite-time attitude tracking control for the roll channel of bank-to-turn missile is solved. Simulation results are given to demonstrate the effectiveness of the proposed method.

Keywords

Finite-time control Nonlinear systems Bank-to-turn missile 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (61304007), National Natural Science Funds of China for Distinguished Young Scholar (50925727), Key Grant Project of Chinese Ministry of Education (313018), China Postdoctoral Science Foundation Funded Project (2012M521217), Natural Science Foundation of Anhui Province of China (1308085QF106), Anhui Provincial Science and Technology Foundation of China (1301022036), Ph.D. Programs Foundation of Ministry of Education of China (20130111120007), and Fundamental Research Funds for the Central Universities of China (2012HGBZ0205, 2012HGQC0002).

References

  1. 1.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Ding, S., Li, S., Li, Q.: Disturbance analysis for continuous finite-time control systems. J. Control Theory Appl. 7(3), 271–276 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Wang, Z., Li, S., Fei, S.: Finite-time tracking control of a nonholonomic mobile robot. Asian J. Control 11(3), 344–357 (2009)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73(4), 2313–2327 (2013)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hong, Y., Xu, Y., Huang, J.: Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 185–200 (2002)MathSciNetGoogle Scholar
  9. 9.
    Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Zhao, D., Li, S., Zhu, Q., Gao, F.: Robust finite-time control approach for robotic manipulators. IET Control Theory Appl. 4(1), 1–15 (2010) Google Scholar
  11. 11.
    Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1–2), 229–244 (2013)CrossRefMATHGoogle Scholar
  12. 12.
    Hong, Y., Huang, J., Xu, Y.: On an output feedback-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)Google Scholar
  13. 13.
    Frye, M., Ding, S., Qian, C., Li, S.: Fast convergent observer design for output feedback stabilization of a pvtol aircraft. IET Control Theory Appl. 4(4), 690–700 (2010)Google Scholar
  14. 14.
    Tian, W., Du, H., Qian, C.: A semi-global finite-time convergent observer for a class of nonlinear systems with bounded trajectories. Nonlinear Anal. Real World Appl. 13(4), 1827–1836 (2012)Google Scholar
  15. 15.
    Yu, X., Man, Z.: Model reference adaptive control systems with terminal sliding modes. Int. J. Control 64(6), 1165–1176 (1996)Google Scholar
  16. 16.
    Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)Google Scholar
  17. 17.
    Park, K.B., Lee, J.J.: Comments on “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators”. IEEE Trans. Autom. Control 41(5), 761–762 (1996)CrossRefMATHGoogle Scholar
  18. 18.
    Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(9), 2159–2167 (2002)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Duan, G., Wang, H.: Parameter design of smooth switching controller and application for bank-to-turn missiles. Aerosp. Control 23(2), 41–46 (2005). (in Chinese)Google Scholar
  21. 21.
    Tan, F., Duan, G.: Global stabilizing controller design for linear time-varying systems and its application on BTT missiles. J. Syst. Eng. Electron. 19(6), 1178–1184 (2008)CrossRefMATHGoogle Scholar
  22. 22.
    Hardy, H., Littlewood, J.E., Polya, G.: Inequalities. Cam- bridge University Press, Cambridge (1952)MATHGoogle Scholar
  23. 23.
    Polendo, J., Qian, C.: An expanded method to robustly stabilize uncertain nonlinear systems. Commun. Inform. Syst. 8(1), 55–70 (2008)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Li, S., Yang, J.: Robust autopilot design for bank-to-turn missiles using disturbance observers. IEEE Trans. Aerosp. Electron. Syst. 49(1), 558–579 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yingying Cheng
    • 1
  • Haibo Du
    • 1
  • Yigang He
    • 1
  • Ruting Jia
    • 2
  1. 1.School of Electrical Engineering and AutomationHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.Electrical Engineering and Computer Science DepartmentMcNeese State UniversityLake CharlesUSA

Personalised recommendations