Advertisement

Nonlinear Dynamics

, Volume 76, Issue 2, pp 1069–1077 | Cite as

Switching stabilization and \({ H}_{\varvec{\infty }}\) performance of a class of discrete switched LPV system with unstable subsystems

  • Xu He
  • Jun Zhao
Original Paper

Abstract

Stability and \(H_\infty \) performance are analyzed in this paper for a class of discrete switched linear parameter-varying (LPV) systems in which all subsystems’ state-space matrices are parametrically affine, and any subsystem is not stable for parameters varying in a convex set. A switching law is designed to stabilize and satisfy the \(H_\infty \) performance of the switched LPV system. By means of the multiple Lyapunov functions method, linear matrix inequality (LMI) conditions for the existence of parameter-dependent Lyapunov functions are proposed. An example shows the effectiveness of the proposed methods.

Keywords

Discrete switched LPV systems Unstable subsystems  Multi-Lyapunov functions Stability analysis \(H_\infty \) performance 

Notes

Acknowledgments

This study was supported by the Chinese National Fundamental Research Program under Grant 2009CB320601, and the National Natural Science Foundation of China under Grants 61233002 and 61174073.

References

  1. 1.
    Deaecto, G.S., Geromel, J.C., Daafouz, J.: Dynamic output feedback \(H_\infty \) control of switched linear systems. Automatica 47(8), 1713–1720 (2011)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    He, X., Dymirkovsky, G.: Stabilizing switching laws for switched LPV systems with all unstable subsystems. In: System Science and Engineering (ICSSE), 2013 International Conference on, pp. 377–382 (2013). doi: 10.1109/ICSSE.2013.6614694
  3. 3.
    He, X., Zhao, J.: Multiple Lyapunov functions with blending for induced \(L_2\)-norm control of switched LPV systems and its application to an F-16 aircraft model. Asian J. Control pp. 1–13 (2012). doi: 10.1002/asjc.607
  4. 4.
    Lescher, F., Zhao, J.Y., Borne, P.: Switching LPV controllers for a variable speed pitch regulated wind turbine. Int. J. Comput. Commun. Control 1(4), 73–84 (2006)Google Scholar
  5. 5.
    Liberzon, D.: Switching in Systems and Control. Springer, New York (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Lim, S., How, J.: Modeling and \(H_\infty \) control for switched linear parameter-varying missile autopilot. IEEE Trans. Control Syst. Technol. 11(6), 830–838 (2003). doi:  10.1109/TCST.2003.815610 CrossRefGoogle Scholar
  7. 7.
    Lin, H., Antsaklis, P.J.: Hybrid state feedback stabilization with \(l_2\) performance for discrete-time switched linear systems. Int. J. Control 81(7), 1114–1124 (2008). doi:  10.1080/00207170701654354 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Liu, L., Wei, X., Liu, Z.: Switching LPV control for the air path system of diesel engines. In: 2008 Chinese Control and Decision Conference, pp. 4167–4172 (2008). doi: 10.1109/CCDC.2008.4598114
  9. 9.
    Lu, B., Wu, F.: Switching LPV control designs using multiple parameter-dependent lyapunov functions. Automatica 40(11), 1973–1980 (2004). http://www.sciencedirect.com/science/article/pii/S0005109804001840 Google Scholar
  10. 10.
    Lu, B., Wu, F., Kim, S.: Switching LPV control of an F-16 aircraft via controller state reset. IEEE Trans. Control Syst. Technol. 14(2), 267–277 (2006). doi: 10.1109/TCST.2005.863656 CrossRefGoogle Scholar
  11. 11.
    Park, B., Yun, S., Park, P.: \({H}_{2}\) state-feedback control for LPV systems with input saturation and matched disturbance. Nonlinear Dyn. 67, 1083–1096 (2012). doi:  10.1007/s11071-011-0052-0 CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Qiu, J., Feng, G., Gao, H., Fan, Y.: Exponential \(H_\infty \) static output feedback control of switched systems with average dwell-time and time-varying uncertainties. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, pp. 6383–6388 (2009). doi: 10.1109/CDC.2009.5400777
  13. 13.
    Sato, M.: Filter design for LPV systems using quadratically parameter-dependent Lyapunov functions. Automatica 42(11), 2017–2023 (2006). http://www.sciencedirect.com/science/article/pii/S0005109806002755 Google Scholar
  14. 14.
    Sun, X.M., Liu, G.P., Rees, D., Wang, W.: Stability of systems with controller failure and time-varying delay. IEEE Trans. Autom. Control 53(10), 2391–2396 (2008). doi: 10.1109/TAC.2008.2007528 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sun, X.M., Wang, W.: Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics. Automatica 48(9), 2359–2364 (2012). http://www.sciencedirect.com/science/article/pii/S0005109812003226 Google Scholar
  16. 16.
    Yao, X., Zheng, W., Li, T.: \(H_\infty \) filtering for linear parameter-varying systems with jumping parameters subject to data missing and quantization. In: 2011 30th Chinese Control Conference (CCC), pp. 2312–2317 (2011)Google Scholar
  17. 17.
    Zhang, L., Shi, P.: \(l_2\)\(l_\infty \) model reduction for switched LPV systems with average dwell time. IEEE Trans. Autom. Control 53(10), 2443–2448 (2008). doi:  10.1109/TAC.2008.2007860 CrossRefGoogle Scholar
  18. 18.
    Zhang, L., Shi, P.: \(H_\infty \) filtering for a class of switched linear parameter varying systems. Int. J. Syst. Sci. 42(5), 781–788 (2010). doi:  10.1080/00207721003764158 CrossRefGoogle Scholar
  19. 19.
    Zhao, J., Hill, D.J.: On stability, \(L_2\)-gain and \(H_\infty \) control for switched systems. Automatica 44(5), 1220–1232 (2008). http://www.sciencedirect.com/science/article/pii/S0005109807004505

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Synthetical Automation for Process IndustriesNortheastern UniversityShenyang People’s Republic of China
  2. 2.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyang People’s Republic of China

Personalised recommendations