Advertisement

Nonlinear Dynamics

, Volume 76, Issue 1, pp 777–784 | Cite as

Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model

  • Huiyi Hu
  • Rui Ding
Original Paper

Abstract

For the difficulty that the information vector in the identification model contains the unknown variables, we substitute these unknown variables with the outputs of the auxiliary model and then develop an auxiliary model based recursive least squares algorithm, an auxiliary model based least squares iterative (AM-LSI) algorithm, and derive an equivalent matrix decomposition based AM-LSI algorithm for input nonlinear controlled autoregressive systems based on the auxiliary model. The simulation results show that the proposed algorithms can estimate the parameters of a class of input nonlinear systems.

Keywords

Parameter estimation Recursive identification Least squares Iterative method Auxiliary model Input nonlinear system 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61273194), the Natural Science Foundation of Jiangsu Province (China, BK2012549), the CXLX13-738 Project, the JUDCF13035 Project, the PAPD of Jiangsu Higher Education Institutions, the 111 Project (B12018) and the Fundamental Research Funds for the Central Universities (No. JUSRP51322B).

References

  1. 1.
    Ding, F.: System Identification—New Theory and Methods. Science Press, Beijing (2013) Google Scholar
  2. 2.
    Ding, F., Gu, Y.: Performance analysis of the auxiliary model based least squares identification algorithm for one-step state delay systems. Int. J. Comput. Math. 89(15), 2019–2028 (2012) MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ding, F., Gu, Y.: Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state space systems with one-step state delay. Circuits Syst. Signal Process. 32(2), 585–599 (2013) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wang, D.Q., Ding, F.: Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011) MATHCrossRefGoogle Scholar
  5. 5.
    Wang, D.Q., Ding, F.: Hierarchical least squares estimation algorithm for Hammerstein–Wiener systems. IEEE Signal Process. Lett. 19(12), 825–828 (2012) CrossRefGoogle Scholar
  6. 6.
    Wang, D.Q., Ding, F., Chu, Y.Y.: Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle. Inf. Sci. 222, 203–212 (2013) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Qin, P., Nishii, R., Yang, Z.J.: Selection of NARX models estimated using weighted least squares method via GIC-based method and l(1)-norm regularization methods. Nonlinear Dyn. 70(3), 1831–1846 (2012) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hu, P.P., Ding, F.: Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dyn. 73(1–2), 583–592 (2013) MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, J., Zhang, Y., Ding, R.F.: Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model. Nonlinear Dyn. 72(4), 865–871 (2013) MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, Z.Y., Shen, Y.X., Ji, Z.C., Ding, R.: Filtering based recursive least squares algorithm for Hammerstein FIR-MA systems. Nonlinear Dyn. 73(1–2), 1045–1054 (2013) MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ding, F., Liu, G., Liu, X.P.: Parameter estimation with scarce measurements. Automatica 47(8), 1646–1655 (2011) MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ding, F., Shi, Y., Chen, T.: Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 56(5), 373–380 (2007) MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, D.Q., Chu, Y.Y., et al.: Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math. Comput. Model. 52(1–2), 309–317 (2010) MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, D.Q., Chu, Y.Y., et al.: Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems. Comput. Math. Appl. 59(9), 3092–3098 (2010) MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Yu, B., Shi, Y., Huang, H.: l-2 and l-infinity filtering for multirate systems using lifted models. Circuits Syst. Signal Process. 27(5), 699–711 (2008) MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Shi, Y., Fang, H.: Kalman filter based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538–551 (2010) MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Dehghan, M., Hajarian, M.: Two algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of Sylvester matrix equations. Appl. Math. Lett. 24(4), 444–449 (2011) MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Dehghan, M., Hajarian, M.: An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Appl. Math. Model. 34(3), 639–654 (2010) MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Ding, F., Liu, X.P., Liu, G.: Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit. Signal Process. 20(3), 664–677 (2010) CrossRefGoogle Scholar
  20. 20.
    Ding, F., Liu, Y.J., Bao, B.: Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 226(1), 43–55 (2012) CrossRefGoogle Scholar
  21. 21.
    Ding, F., Liu, X.G., Chu, J.: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 7(2), 176–184 (2013) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liu, Y.J., Wang, D.Q., et al.: Least-squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data. Digit. Signal Process. 20(5), 1458–1467 (2010) CrossRefGoogle Scholar
  23. 23.
    Wang, D.Q.: Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648–1657 (2011) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xie, L., Liu, Y.J., Yang, H.Z.: Gradient based and least squares based iterative algorithms for matrix equations AXB+CXTD=F. Appl. Math. Comput. 217(5), 2191–2199 (2010) MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hu, H.Y., Ding, F.: An iterative least squares estimation algorithm for controlled moving average system based on matrix decomposition. Appl. Math. Lett. 25(12), 2332–2338 (2012) MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Hu, H.Y., Ding, R.F.: Decomposition Based Iterative Estimation Algorithm for Autoregressive Moving Average Models, The 31st Chinese Control Conference, July 25–27, 2012, Hefei, China, pp. 1932–1937 (2012) Google Scholar
  27. 27.
    Hu, H.Y., Ding, F.: A least squares based iterative identification algorithm for a Hammerstein nonlinear finite impulse response moving average systems. Appl. Math. Model. 38 (2014, accepted) Google Scholar
  28. 28.
    Ding, F.: Decomposition based fast least squares algorithm for output error systems. Signal Process. 93(5), 1235–1242 (2013) CrossRefGoogle Scholar
  29. 29.
    Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011) CrossRefGoogle Scholar
  30. 30.
    Vörös, J.: Parameter identification of discontinuous Hammerstein systems. Automatica 33(6), 1141–1146 (1997) MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Vörös, J.: Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities. IEEE Trans. Autom. Control 44(11), 2145–2149 (1999) MATHCrossRefGoogle Scholar
  32. 32.
    Vörös, J.: Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 48(12), 2203–2206 (2003) CrossRefGoogle Scholar
  33. 33.
    Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005) MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Ding, F., Chen, T.: Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 40(10), 1739–1748 (2004) MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Ding, F., Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Autom. Control 50(9), 1436–1441 (2005) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Liu, Y.J., Xiao, Y.S., Zhao, X.L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput. 215(4), 1477–1483 (2009) MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Ding, F., Chen, H.B., Li, M.: Multi-innovation least squares identification methods based on the auxiliary model for MISO systems. Appl. Math. Comput. 187(2), 658–668 (2007) MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Ding, F.: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Model. 37(4), 1694–1704 (2013) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Xie, L., Liu, Y.J., et al.: Modeling and identification for non-uniformly periodically sampled-data systems. IET Control Theory Appl. 4(5), 784–794 (2010) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ding, F., Ding, J.: Least squares parameter estimation with irregularly missing data. Int. J. Adapt. Control Signal Process. 24(7), 540–553 (2010) MATHGoogle Scholar
  41. 41.
    Ding, F., Chen, T.: Identification of dual-rate systems based on finite impulse response models. Int. J. Adapt. Control Signal Process. 18(7), 589–598 (2004) MATHCrossRefGoogle Scholar
  42. 42.
    Han, L.L., Sheng, J., et al.: Auxiliary models based recursive least squares identification for multirate multi-input systems. Math. Comput. Model. 50(7–8), 1100–1106 (2009) MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Ding, F., Liu, X.P., Liu, G.: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises. Signal Process. 89(10), 1883–1890 (2009) MATHCrossRefGoogle Scholar
  44. 44.
    Wang, D.Q., Ding, F.: Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems. Digit. Signal Process. 20(3), 750–762 (2010) CrossRefGoogle Scholar
  45. 45.
    Ding, F., Chen, T.: Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007) MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Ding, F., Liu, X.P., Liu, G.: Multi-innovation least squares identification for linear and pseudo-linear regression models. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(3), 767–778 (2010) CrossRefGoogle Scholar
  47. 47.
    Ding, F.: Several multi-innovation identification methods. Digit. Signal Process. 20(4), 1027–1039 (2010) CrossRefGoogle Scholar
  48. 48.
    Han, L.L., Ding, F.: Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digit. Signal Process. 19(4), 545–554 (2009) MathSciNetCrossRefGoogle Scholar
  49. 49.
    Liu, Y.J., Yu, L., et al.: Multi-innovation extended stochastic gradient algorithm and its performance analysis. Circuits Syst. Signal Process. 29(4), 649–667 (2010) MATHCrossRefGoogle Scholar
  50. 50.
    Han, L.L., Ding, F.: Parameter estimation for multirate multi-input systems using auxiliary model and multi-innovation. J. Syst. Eng. Electron. 21(6), 1079–1083 (2010) Google Scholar
  51. 51.
    Han, L.L., Ding, F.: Identification for multirate multi-input systems using the multi-innovation identification theory. Comput. Math. Appl. 57(9), 1438–1449 (2009) MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Zhang, J.B., Ding, F., Shi, Y.: Self-tuning control based on multi-innovation stochastic gradient parameter estimation. Syst. Control Lett. 58(1), 69–75 (2009) MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Ding, J., Ding, F.: Bias compensation based parameter estimation for output error moving average systems. Int. J. Adapt. Control Signal Process. 25(12), 1100–1111 (2011) MATHCrossRefGoogle Scholar
  54. 54.
    Ding, J., Ding, F., Liu, X.P., Liu, G.: Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 56(11), 2677–2683 (2011) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Ding, F.: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl. Math. Model. 37(7), 4798–4808 (2013) MathSciNetCrossRefGoogle Scholar
  56. 56.
    Liu, Y.J., Sheng, J., Ding, R.F.: Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems. Comput. Math. Appl. 59(8), 2615–2627 (2010) MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Ding, F.: Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7(1), 68–79 (2013) MathSciNetCrossRefGoogle Scholar
  58. 58.
    Ding, F., Liu, G., Liu, X.P.: Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Trans. Autom. Control 55(8), 1976–1981 (2010) MathSciNetCrossRefGoogle Scholar
  59. 59.
    Zhang, Y.: Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods. Math. Comput. Model. 53(9–10), 1810–1819 (2011) MATHCrossRefGoogle Scholar
  60. 60.
    Ding, F., Liu, X.M., Chen, H.B., Yao, G.Y.: Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems. Signal Process. 97, 31–39 (2014) CrossRefGoogle Scholar
  61. 61.
    Ding, F.: Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014) MathSciNetCrossRefGoogle Scholar
  62. 62.
    Zhu, D.Q., Kong, M.: Adaptive fault-tolerant control of nonlinear system: an improved CMAC based fault learning approach. Int. J. Control 80(10), 1576–1594 (2007) MATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    Zhu, D.Q., Gu, W.: Sensor fusion for integrated circuit fault diagnosis using a belief function model. Int. J. Distrib. Sens. Netw. 6(4), 247–261 (2008) CrossRefGoogle Scholar
  64. 64.
    Zhu, D.Q., Liu, Q., Yang, Y.S.: An active fault-tolerant control method of unmanned underwater vehicles with continuous and uncertain faults. Int. J. Adv. Robot. Syst. 5(4), 411–418 (2008) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)Jiangnan UniversityWuxiP.R. China
  2. 2.School of Internet of Things EngineeringJiangnan UniversityWuxiP.R. China

Personalised recommendations