Skip to main content
Log in

Analytical and numerical investigation of a new Lorenz-like chaotic attractor with compound structures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a three-dimensional autonomous Lorenz-like system formed by only five terms with a butterfly chaotic attractor. The dynamics of this new system is completely different from that in the Lorenz system family. This new chaotic system can display different dynamic behaviors such as periodic orbits, intermittency and chaos, which are numerically verified through investigating phase trajectories, Lyapunov exponents, bifurcation diagrams and Poincaré sections. Furthermore, this new system with compound structures is also proved by the presence of Hopf bifurcation at the equilibria and the crisis-induced intermittency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cafagna, D., Grassi, G.: Generation of chaotic beats in a modified Chua’s circuit, Part I: Dynamic behaviour. Nonlinear Dyn. 44, 91–99 (2006). doi:10.1007/s11071-006-1948-y

    Article  MATH  Google Scholar 

  2. Cafagna, D., Grassi, G.: Generation of chaotic beats in a modified Chua’s circuit, Part II: Circuit design. Nonlinear Dyn. 44, 101–108 (2006). doi:10.1007/s11071-006-1949-x

    Article  MATH  Google Scholar 

  3. Gaspard, P.: Microscopic chaos and chemical reactions. Physica D 263, 315–328 (1999). doi:10.1016/S0378-4371(98)00504-4

    Article  MathSciNet  Google Scholar 

  4. Shabunin, A., Astakhov, V., Demidov, V., Provata, A., Baras, F., Nicolis, G., Anishchenko, V.: Modeling chemical reactions by forced limit-cycle oscillator: synchronization phenomena and transition to chaos. Chaos Solitons Fractals 15, 395–405 (2003). doi:10.1016/S0960-0779(02)00106-6

    Article  MATH  Google Scholar 

  5. Kahan, S., Montagne, R.: Controlling spatiotemporal chaos in optical systems. Int. J. Bifurc. Chaos 11, 2853–2861 (2001). doi:10.1142/S0218127401003917

    Article  Google Scholar 

  6. Liu, J.M., Chen, H.F., Tang, S.: Optical-communication systems based on chaos in semiconductor lasers. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 1475–1483 (2001). doi:10.1109/Tcsi.2001.972854

    Article  Google Scholar 

  7. Hentschel, M., Richter, K.: Quantum chaos in optical systems: the annular billiard. Phys. Rev. E 66, 056207 (2002). doi:10.1103/Physreve.66.056207

    Article  MathSciNet  Google Scholar 

  8. Aref, H.: Fluid dynamics—order in chaos. Nature 401, 756–758 (1999). doi:10.1038/44495

    Article  Google Scholar 

  9. Duane, G.S., Tribbia, J.J.: Synchronized chaos in geophysical fluid dynamics. Phys. Rev. Lett. 86, 4298–4301 (2001). doi:10.1103/PhysRevLett.86.4298

    Article  Google Scholar 

  10. Weiss, H.L., Szeri, A.J.: Nested invariant 3-tori embedded in a sea of chaos in a quasiperiodic fluid flow. Int. J. Bifurc. Chaos 19, 2181–2191 (2009). doi:10.1142/S0218127409024001

    Article  MATH  MathSciNet  Google Scholar 

  11. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963). doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    Article  Google Scholar 

  12. Montangero, S., Fronzoni, L., Girgolini, P.: The complexity of the logistic map at the chaos threshold. Phys. Lett. A 285, 81–87 (2001). doi:10.1016/S0375-9601(01)00332-2

    Article  MATH  MathSciNet  Google Scholar 

  13. Borges, E.P., Tirnakli, U.: Mixing and relaxation dynamics of the Henon map at the edge of chaos. Physica D 193, 148–152 (2004). doi:10.1016/j.physd.2004.01.015

    Article  MATH  MathSciNet  Google Scholar 

  14. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976). doi:10.1016/0375-9601(76)90101-8

    Article  Google Scholar 

  15. Sprott, J.C.: Simplest dissipative chaotic flow. Phys. Lett. A 228, 271–274 (1997). doi:10.1016/S0375-9601(97)00088-1

    Article  MATH  MathSciNet  Google Scholar 

  16. Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20, 1567–1580 (2010). doi:10.1142/S0218127410027076

    Article  Google Scholar 

  17. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999). doi:10.1142/S0218127499001024

    Article  MATH  MathSciNet  Google Scholar 

  18. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002). doi:10.1142/S0218127402004620

    Article  MATH  Google Scholar 

  19. Lü, J.H., Chen, G.R., Zhang, S.C.: Dynamical analysis of a new chaotic attractor. Int. J. Bifurc. Chaos 12, 1001–1015 (2002). doi:10.1142/S0218127402004851

    Article  MATH  Google Scholar 

  20. Yang, Q.G., Chen, G.R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18, 1393–1414 (2008). doi:10.1142/S0218127408021063

    Article  MATH  Google Scholar 

  21. Chen, Z.Q., Yang, Y., Yuan, Z.Z.: A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons Fractals 38, 1187–1196 (2008). doi:10.1016/j.chaos.2007.01.058

    Article  MATH  MathSciNet  Google Scholar 

  22. Grassi, G., Severance, F.L., Mashev, E.D., Bazuin, B.J., Miller, D.A.: Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems. Int. J. Bifurc. Chaos 18, 2089–2094 (2008). doi:10.1142/S0218127408021580

    Article  MATH  Google Scholar 

  23. Qi, G.Y., Chen, G.R., van Wyk, M.A., van Wyk, B.J., Zhang, Y.H.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Solitons Fractals 38, 705–721 (2008). doi:10.1016/j.chaos.2007.01.029

    Article  MATH  MathSciNet  Google Scholar 

  24. Cang, S.J., Qi, G.Y., Chen, Z.Q.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010). doi:10.1007/s11071-009-9558-0

    Article  MATH  MathSciNet  Google Scholar 

  25. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua’s circuit. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47, 425–429 (2000). doi:10.1109/81.841929

    Article  Google Scholar 

  26. Lü, J.H., Yu, X.H., Chen, G.R.: Generating chaotic attractors with multiple merged basins of attraction: a switching piecewise-linear control approach. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 198–207 (2003). doi:10.1109/Tcsi.2002.808241

    Article  Google Scholar 

  27. Yu, S., Tang, W.K.S., Chen, G.R.: Generation of n × m-scroll attractors under a Chua-circuit framework. Int. J. Bifurc. Chaos 17, 3951–3964 (2007). doi:10.1142/S0218127407019809

    Article  MATH  Google Scholar 

  28. Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56, 453–462 (2009). doi:10.1007/s11071-008-9417-4

    Article  MATH  Google Scholar 

  29. C̆elikovský, S., Chen, G.R.: On the generalized Lorenz canonical form. Chaos Solitons Fractals 26, 1271–1276 (2005). doi:10.1016/j.chaos.2005.02.040

    Article  MathSciNet  Google Scholar 

  30. Lu, J.H., Chen, G.R., Cheng, D.Z., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002). doi:10.1142/S021812740200631x

    Article  MathSciNet  Google Scholar 

  31. Sprott, J.C.: A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos 21, 2391–2394 (2011). doi:10.1142/S021812741103009x

    Article  MathSciNet  Google Scholar 

  32. Zhou, T.S., Chen, G.R., C̆elikovský, S.: Sil’nikov chaos in the generalized Lorenz canonical form of dynamical systems. Nonlinear Dyn. 39, 319–334 (2005). doi:10.1007/s11071-005-4195-8

    Article  MATH  Google Scholar 

  33. Yang, Q.G., Chen, G.R., Zhou, T.S.: A unified Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos 16, 2855–2871 (2006). doi:10.1142/S0218127406016501

    Article  MATH  MathSciNet  Google Scholar 

  34. Yang, Q.G., Zhang, K.M., Chen, G.R.: A modified generalized Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos 19, 1931–1949 (2009). doi:10.1142/S0218127409023834

    Article  MATH  MathSciNet  Google Scholar 

  35. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994). doi:10.1103/PhysRevE.50.R647

    Article  MathSciNet  Google Scholar 

  36. Moloia, J.L., Chen, G.R.: Hopf Bifurcation Analysis: A Frequency Domain Approach, pp. 20–28. World Scientific, Singapore (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 6117-4094 and 11202148), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090031110029), the China/South Africa Research Cooperation Programme (Nos. 78673 and CS06-L02) and the South African National Research Foundation Incentive Grant (No. 81705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Cang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cang, S., Wang, Z., Chen, Z. et al. Analytical and numerical investigation of a new Lorenz-like chaotic attractor with compound structures. Nonlinear Dyn 75, 745–760 (2014). https://doi.org/10.1007/s11071-013-1101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1101-7

Keywords

Navigation