Nonlinear Dynamics

, Volume 75, Issue 3, pp 513–527 | Cite as

Distributed cooperative control for multiple quadrotor systems via dynamic surface control

  • Yinqiu Wang
  • Qinghe Wu
  • Yao Wang
Original Paper


This paper addresses the cooperative control problems of multiple quadrotor systems under fixed directed communication topologies. Dynamic surface control (DSC) is utilized to design nonlinear consensus controllers to make multiple quadrotors construct and keep a formation during flying. The control scheme is distributed so that each quadrotor updates the values of its information states based on the information states of its neighbors and its own states. Moreover, the leader–follower case is also discussed. In this case, distributed continuous schemes are also proposed with distributed sliding-mode observers, whose function is to estimate two linear combinations of the leader’s velocity and acceleration accurately in finite time. Finally, the effectiveness of the theoretical results is demonstrated via two examples.


Quadrotors Consensus Nonlinear control Dynamic surface control Trajectory tracking 



This work was supported by the National Natural Science Foundation of P.R. China under Grant 61074031 and the Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT1208.


  1. 1.
    Altug, E., Osreiwski, J.O., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: Proc. IEEE. Conf. Robotics and Automation, Washington, DC, pp. 72–77 (2002) Google Scholar
  2. 2.
    Madahi, T., Benallegue, A.: Control of a quadrotor mini-helicopter via full state backstepping technique. In: Proc. IEEE. Conf. on Decision and Control, San Diego, pp. 1515–1520 (2006) CrossRefGoogle Scholar
  3. 3.
    Castillo, P., Lozano, R., Dzul, A.: Stabilization of a mini rotorcraft having four rotors. IEEE Control Syst. Mag. 25(6), 45–55 (2005) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Das, A., Subbarao, K., Lweis, F.: Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Control Theory Appl. 3(3), 303–314 (2008) CrossRefGoogle Scholar
  5. 5.
    Xü, R., Ümit, Ö.: Sliding mode control of a class of underactuated systems. Automatica 44, 233–241 (2008) CrossRefGoogle Scholar
  6. 6.
    Guerreoro, J.A., Castillo, P., Salazar, S., Lozano, R.: Mini rotorcraft flight formation control using bounded inputs. J. Intell. Robot. Syst. 12(6), 175–186 (2012) CrossRefGoogle Scholar
  7. 7.
    Zhou, J., Wang, Q.: Distributed discrete-time nonlinear consensus protocols. In: Proc. IEEE. Conf. on Decision and Control, Shanghai, pp. 4759–4764 (2009) Google Scholar
  8. 8.
    Alon, D., Nadav, B., Shai, A.: Formation flight using multiple integral backstepping controllers. In: Proc. IEEE. Conf. on Cybernetics and Intelligent Systems, Qingdao, pp. 317–322 (2011) Google Scholar
  9. 9.
    Matthew, T., Nathan, M., Vijay, K.: Decentralized formation control with variable shapes for aerial robots. In: Proc. IEEE. Conf. on Robotics and Automation, Saint Paul, pp. 23–30 (2012) Google Scholar
  10. 10.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multiagent systems. Proc. IEEE 95(1), 215–233 (2007) CrossRefGoogle Scholar
  12. 12.
    Liu, J., Liu, Z., Chen, Z.: Coordinative control of multi-agent systems using distributed nonlinear output regulation. Nonlinear Dyn. 67(3), 1871–1881 (2007) CrossRefGoogle Scholar
  13. 13.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007) CrossRefGoogle Scholar
  14. 14.
    Bauso, D., Giarré, L., Pesenti, R.: Non-linear protocols for optimal distributed consensus in networks of dynamic agents. Syst. Control Lett. 55(11), 918–928 (2006) CrossRefMATHGoogle Scholar
  15. 15.
    Mei, J., Ren, W., Ma, G.: Distributed coordinated tracking with a dynamic leader for multiple Euler–Lagrange systems. IEEE Trans. Autom. Control 56(6), 1415–1421 (2010) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mei, J., Ren, W., Ma, G.: Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph. Automatica 48(4), 653–659 (2012) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst. Control Lett. 59(9), 522–529 (2012) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Arcak, P.: Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 56(6), 1415–1421 (2010) MathSciNetGoogle Scholar
  19. 19.
    Yip, P.P., Hedrick, J.K.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959–979 (1998) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Swarrop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control of a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000) CrossRefGoogle Scholar
  21. 21.
    Das, A., Lwies, F.L.: Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. Int. J. Robust Nonlinear Control 21(13), 1509–1524 (2011) CrossRefMATHGoogle Scholar
  22. 22.
    Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Control. Springer, London (2008) MATHGoogle Scholar
  23. 23.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, New York (1985) CrossRefMATHGoogle Scholar
  24. 24.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Beijing Institute of TechnologyBeijingChina

Personalised recommendations