Nonlinear Dynamics

, Volume 75, Issue 1–2, pp 367–386 | Cite as

Dynamic non-linear energy absorbers based on properly stretched in-plane elastomer structures

  • I. A. Antoniadis
  • D. T. Venetsanos
  • F. G. Papaspyridis
Original Paper


Traditionally, elastomers are considered to be one of the best material candidates for the design of energy absorbing devices, due to their remarkable visco-elastic and extensibility material properties. This capability can be further enhanced by the design of appropriate Dielectric Elastomer Generators (DEGs). The present paper proceeds to another alternative direction, which consists of the design of appropriate elastomer structures with enhanced energy absorption capabilities, are attributed more to the appropriate non-linear design of the elastomer structure itself, than to the hyperelastic material properties of the elastomer members. For this reason, a simple chi-shaped in-plane elastic structure is considered, comprising one proof mass with four elastomer members attached to it, placed in a chi-shaped configuration, and being properly stretched. A systematic analysis is carried out, with respect to the variation of two basic structure design properties on the dynamic behavior: the orientation angle of the members and their initial pre-stress. The obtained results show that the variation of just these two basic parameters of the structure may lead to a quite rich and interesting non-linear dynamic behavior. More specifically, the traditional always-in-tension concept leads to a linear dynamic system response, even though the elastomer members are considered to have been made of a non-linear hyper-elastic material. Alternatively, a new partially-loose-member operating concept is analyzed. This concept suggests that some individual elastomer members be allowed to become loose for some period of the operating cycle, (but not all of them simultaneously), strongly enhancing the broadband energy absorbing capability of the structure itself.


Broadband energy absorbing Softening Elastomer structures 


  1. 1.
    Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100 %. Science 287, 836–839 (2000) CrossRefGoogle Scholar
  2. 2.
    Pelrine, R., Kornbluh, R., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S.: Dielectric elastomers: generator mode fundamentals and applications. Proc. SPIE 4329, 148–156 (2001) CrossRefGoogle Scholar
  3. 3.
    Jean-Mistral, C., Basrour, S., Chaillout, J.J.: Modelling of dielectric polymers for energy scavenging applications. Smart Mater. Struct. (2010). doi: 10.1088/0964-1726/19/10/105006 Google Scholar
  4. 4.
    Koh, S.J.A., Keplinger, C., Li, T., Bauer, S., Suo, Z.: Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Trans. Mechatron. 16(1), 33–41 (2011) CrossRefGoogle Scholar
  5. 5.
    Baumgartner, R., Keplinger, C., Kaltseis, R., Schwödiauer, R., Bauer, S.: Dielectric elastomers: from the beginning of modern science to applications in actuators and energy harvesters. Proc. SPIE (2011). doi: 10.1117/12.880289 Google Scholar
  6. 6.
    Falcão, A.F. de O.: Wave energy utilization: a review of the technologies. Renew. Sustain. Energy Rev. 14, 899–918 (2010) CrossRefGoogle Scholar
  7. 7.
    Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867–1897 (2010) CrossRefGoogle Scholar
  8. 8.
    Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. (2007). doi: 10.1088/0964-1726/16/3/R01 Google Scholar
  9. 9.
    Lallart, M., Wu, Y.C., Richard, C., Guyomar, D., Halvorsen, E.: Broadband modeling of a nonlinear technique for energy harvesting. Smart Mater. Struct. (2012). doi: 10.1088/0964-1726/21/11/115006 Google Scholar
  10. 10.
    Dalzell, P., Bonello, P.: Analysis of an energy harvesting piezoelectric beam with energy storage circuit. Smart Mater. Struct. (2012). doi: 10.1088/0964-1726/21/10/105029 Google Scholar
  11. 11.
    Seuaciuc-Osorio, T., Daqaq, M.F.: Energy harvesting under excitations of time-varying frequency. J. Sound Vib. 329, 2497–2515 (2010) CrossRefGoogle Scholar
  12. 12.
    Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. (2011). doi: 10.1088/0964-1726/20/7/075022 Google Scholar
  13. 13.
    Wang, H.Y., Shan, X.B., Xie, T.: An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system. Univ.-Sci. A, Appl. Phys. Eng. 13(7), 526–537 (2012) Google Scholar
  14. 14.
    Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012) CrossRefGoogle Scholar
  15. 15.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68, 531–541 (2012) CrossRefGoogle Scholar
  16. 16.
    Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329, 1215–1226 (2010) CrossRefGoogle Scholar
  17. 17.
    Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010) CrossRefMATHGoogle Scholar
  18. 18.
    Quinn, D.D., Triplett, A.L., Bergman, L.A., Vakakis, A.F.: Comparing linear and essentially nonlinear vibration-based energy harvesting. J. Vib. Acoust. (2011). doi: 10.1115/1.4002782 Google Scholar
  19. 19.
    Trigona, C., Dumas, N., Latorre, L., Andò, B., Baglio, S., Nouet, P.: Exploiting benefits of a periodically-forced nonlinear oscillator for energy harvesting from ambient vibrations. Proc. Eng. 25, 819–822 (2012) CrossRefGoogle Scholar
  20. 20.
    Orazov, B., O’Reilly, O.M., Zhou, X.: On forced oscillations of a simple model for a novel wave energy converter. Nonlinear Dyn. 67, 1135–1146 (2012) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67, 807–827 (2012) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Elshurafa, A.M., Khirallah, K., Tawfik, H.H., Emira, A., Abdel Aziz, A.K.S., Sedky, S.M.: Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. J. Microelectromech. Syst. 20(4), 943–958 (2011) CrossRefGoogle Scholar
  23. 23.
    Papaspiridis, F.G., Antoniadis, I.A.: Dielectric elastomer actuators as elements of active vibration control systems. Adv. Sci. Technol. 61, 103–111 (2008) CrossRefGoogle Scholar
  24. 24.
    Antoniadis, I.A., Venetsanos, D.T., Papaspyridis, F.G.: DIESYS—dynamically non-linear dielectric elastomer energy generating synergetic structures: perspectives and challenges. Smart Mater. Struct. (2013). doi: 10.1088/0964-1726/22/10/104007 Google Scholar
  25. 25.
    Graf, C., Maas, J.: Electroactive polymer devices for active vibration damping. Proc. SPIE (2011). doi: 10.1117/12.879934 Google Scholar
  26. 26.
    Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Wiley, New York (1950) MATHGoogle Scholar
  27. 27.
    Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006) CrossRefGoogle Scholar
  28. 28.
    Kalmár-Nagy, T., Balachandran, B.: Forced harmonic vibration of a Duffing oscillator with linear viscous damping. In: Kovacic, I., Brennan, M.J. (eds.) The Duffing Equation: Nonlinear Oscillators and Their Behaviour, pp. 139–173. Wiley, New York (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • I. A. Antoniadis
    • 1
  • D. T. Venetsanos
    • 1
  • F. G. Papaspyridis
    • 1
  1. 1.Dynamics and Structures Laboratory, School of Mechanical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations