Advertisement

Nonlinear Dynamics

, Volume 75, Issue 1–2, pp 73–83 | Cite as

An optimal type II fuzzy sliding mode control design for a class of nonlinear systems

  • Taher Niknam
  • Mohammad Hassan Khooban
  • Abdollah Kavousifard
  • Mohammad Reza Soltanpour
Original Paper

Abstract

This study deals with the problem of controlling a class of uncertain nonlinear systems in the presence of external disturbances. To achieve this goal, a new Optimal Type-2 Fuzzy Sliding Mode Controller (OT2FSMC) is introduced. In the proposed controller, a novel heuristic algorithm, namely particle swarm optimization with random inertia weight (RNW–PSO), is employed. To achieve an optimal performance, the parameters of the proposed controller as well as the input and output membership functions are optimized simultaneously by RNW–PSO. The globally asymptotic stability of the closed-loop system is mathematically proved. Finally, this method of control is applied to the inverted pendulum system as a case study. Simulation results show the system performance is desirable.

Keywords

Robust control Type-II fuzzy logic control Sliding mode control Particle Swarm Optimization (PSO) 

References

  1. 1.
    Khooban, M.H., Alfi, A., Nazari Maryam Abadi, D.: Teaching–learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robots. Robotica (2013). Available on CJO2013. doi: 10.1017/S0263574713000283 Google Scholar
  2. 2.
    Khooban, M.H., Alfi, A., Nazari Maryam Abadi, N.: Control of a class of nonlinear uncertain chaotic systems via an optimal type-2 fuzzy PID controller. IET Sci. Meas. Technol. 7(1), 50–58 (2013). doi: 10.1049/iet-smt.2012.0092 CrossRefGoogle Scholar
  3. 3.
    Knospe, C.: PID control. IEEE Control Syst. Mag. 26, 30–31 (2006) CrossRefGoogle Scholar
  4. 4.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942) Google Scholar
  5. 5.
    Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001) Google Scholar
  6. 6.
    John, R.: Type 2 fuzzy sets: an appraisal of theory and applications. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 6, 563–576 (1998) CrossRefMATHGoogle Scholar
  7. 7.
    Liang, Q., Karnik, N., Mendel, J.: Connection admission control in ATM networks using survey-based type 2 fuzzy logic systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 30, 329–339 (2000) CrossRefGoogle Scholar
  8. 8.
    Mendel, J., John, R.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 117–127 (2002) CrossRefGoogle Scholar
  9. 9.
    Utkin, V.I.: Sliding Modes and Their Application to Variable Structure Systems. MIR, Moscow (1978). Chap. 1 Google Scholar
  10. 10.
    Tong, S., Li, H.-X.: Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11(3), 354–360 (2003) CrossRefGoogle Scholar
  11. 11.
    Li, H.-X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11(1), 24–34 (2003) CrossRefGoogle Scholar
  12. 12.
    Li, Y., Ren, C.E., Tong, S.: Adaptive fuzzy backstepping output feedback control for a class of MIMO time-delay nonlinear systems based on high-gain observer. Nonlinear Dyn. 67(2), 1175–1191 (2012) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Li, Y., Ren, C.E., Tong, S.: Adaptive fuzzy backstepping output feedback control of nonlinear uncertain time-delay systems based on high-gain filters. Nonlinear Dyn. 69(3), 781–792 (2012) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with unknown backlash-like hysteresis. Inf. Sci. 198, 130–146 (2012) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (1998) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Bartolini, G., Pydynowski, P.: Asymptotic linearization of uncertain nonlinear systems by means of continuous control. Int. J. Robust Nonlinear Control 3(6), 87–103 (1993) CrossRefMATHGoogle Scholar
  17. 17.
    Bartolini, G.: An improved chattering free VSC scheme for uncertain dynamical systems. IEEE Trans. Autom. Control 41(7), 1220–1226 (1996) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Soltanpour, M.R., Fateh, M.M.: Sliding mode robust control of robot manipulators in the task space by support of feedback linearization and backstepping control. World Appl. Sci. J. 6(1), 70–76 (2009) Google Scholar
  19. 19.
    Shafiei, S.E., Soltanpour, M.R.: Neural network sliding-model-PID controller design for electrically driven robot manipulators. Int. J. Innov. Comput. Inf. Control 5(12), 3949–3960 (2011) Google Scholar
  20. 20.
    Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991). Chap. 1 MATHGoogle Scholar
  21. 21.
    Temeltas, H.: A fuzzy adaptation technique for sliding mode controllers. In: Proceedings of IEEE International Symposium on Industrial Electronics, vol. 1, pp. 110–115 (1998) Google Scholar
  22. 22.
    Chiang, C.-C., Hu, C.-C.: Adaptive fuzzy controller for nonlinear uncertain systems. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, vol. 2, pp. 1131–1136 (1999) Google Scholar
  23. 23.
    Hsu, C., Heidar, A.-M.: Fuzzy variable structure control for MIMO systems. In: Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence, vol. 1, pp. 280–285 (1998) Google Scholar
  24. 24.
    Li, S.-Y., Xi, Y.-G.: Adaptive fuzzy sliding mode control for a class of uncertain dynamic systems. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation, vol. 2, pp. 1849–1853 (2000) Google Scholar
  25. 25.
    Wang, W.-J., Lin, H.-R.: Fuzzy control design for the trajectory tracking on uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 7(1), 53–62 (1999) CrossRefGoogle Scholar
  26. 26.
    Wong, L.-K., et al.: A fuzzy sliding controller for nonlinear systems. IEEE Trans. Ind. Electron. 48, 32–37 (2001) CrossRefGoogle Scholar
  27. 27.
    Barrero, F., et al.: Speed control of induction motors using a novel fuzzy sliding mode structure. IEEE Trans. Fuzzy Syst. 10, 375–383 (2002) CrossRefGoogle Scholar
  28. 28.
    Ryu, S.-H., Park, J.-H.: Auto-tuning of sliding mode control parameters using fuzzy logic. In: Proceedings of the American Control Conference, vol. 1, pp. 618–623 (2001) Google Scholar
  29. 29.
    Palm, R.: Sliding mode fuzzy control. In: Proceedings of IEEE International Conference on Fuzzy Systems, vol. 1, pp. 519–526 (1992) CrossRefGoogle Scholar
  30. 30.
    Lhee, C.-G., et al.: Sliding-like fuzzy logic control with self-tuning the dead zone parameters. In: Proceedings of IEEE International Fuzzy Systems Conference, vol. 1, pp. 544–549 (1999) Google Scholar
  31. 31.
    Lhee, C.-G., et al.: Sliding-like fuzzy logic control with self-tuning the dead zone parameters. IEEE Trans. Fuzzy Syst. 9, 343–348 (2001) CrossRefGoogle Scholar
  32. 32.
    Chen, J.-Y., Lin, Y.-H.: A self-tuning fuzzy controller design. In: Proceeding of IEEE International Conference on Neural Networks, vol. 3, pp. 1358–1362 (1995) Google Scholar
  33. 33.
    Zhang, X.-Y., Su, H.-Y., Chu, J.: Adaptive sliding mode-like fuzzy logic control for high-order nonlinear systems. In: Proceedings of the 2003 IEEE International Symposium on Intelligent Control, vol. 1, pp. 788–792 (2003) Google Scholar
  34. 34.
    Wai, R.-J., Lin, C.-M., Hsu, C.-F.: Self-organizing fuzzy control for motor-toggle servomechanism via sliding mode technique. Fuzzy Sets Syst. 131, 235–249 (2002) CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Tu, K.-Y., Lee, T.-T., Wang, W.-J.: Design of a multi-layer fuzzy logic controller for multi-input multi-output systems. Fuzzy Sets Syst. 111, 199–214 (2000) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Lin, W.-S., Chen, C.-S.: Sliding-mode-based direct adaptive fuzzy controller design for a class of uncertain multivariable nonlinear systems. In: Proceedings of the American Control Conference, vol. 3, pp. 2955–2960 (2002) Google Scholar
  37. 37.
    Roopaei, M., Zolghadri Jahromi, M., et al.: Synchronization of two different chaotic systems using novel adaptive interval type-2 fuzzy sliding mode control. Nonlinear Dyn. 66(4), 667–680 (2011) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013) CrossRefGoogle Scholar
  39. 39.
    Hagras, H.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12, 524–539 (2004) CrossRefGoogle Scholar
  40. 40.
    Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007) CrossRefGoogle Scholar
  41. 41.
    Wu, D., Tan, W.W.: Genetic learning and performance evaluation of type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006) CrossRefGoogle Scholar
  42. 42.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—1. Inf. Sci. 8, 199–249 (1975) CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001) CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Mendel, J.M., Wu, D.: Perceptual Computing: Aiding People in Making Subjective Judgments. Wiley-IEEE Press, Hoboken (2010) CrossRefGoogle Scholar
  45. 45.
    Wu, D., Mendel, J.M.: Enhanced Karnik–Mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009) CrossRefGoogle Scholar
  46. 46.
    Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proc. IEEE Congr. Evolutionary Computation, Seoul, Korea, pp. 94–97 (2001) Google Scholar
  47. 47.
    Bergh, F.V., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176, 937–971 (2006) CrossRefMATHGoogle Scholar
  48. 48.
    Kennedy, J., Eberhart, R.C.: The Particle Swarm: Social Adaptation in Informal-Processing Systems: New Ideas in Optimization. McGraw-Hill, Maidenhead (1999) Google Scholar
  49. 49.
    Modares, H., Alfi, A., Naghibi Sistani, M.B.: Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. Eng. Appl. Artif. Intell. 23, 1105–1111 (2010) CrossRefGoogle Scholar
  50. 50.
    Zhang, L., Yu, H., Hu, S.: A new approach to improve particle swarm optimization. In: Proc. of the International Conf. on Genetic and Evolutionary Computation, pp. 134–139 (2003) Google Scholar
  51. 51.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proc. of the IEEE Conf. on Evolutionary Computation, Singapore, pp. 69–73 (1998) Google Scholar
  52. 52.
    Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proc. IEEE Congr. Evolutionary Computation, Seoul, Korea, pp. 94–97 (2001) Google Scholar
  53. 53.
    Khooban, M.H., Soltanpour, M.R., Nazari, D., Esfahani, Z.: Optimal intelligent control for HVAC systems. J. Power Technol. 92(3), 192–200 (2012) Google Scholar
  54. 54.
    Khooban, M.H.: Design an intelligent proportional-derivative (PD) feedback linearization control for nonholonomic-wheeled mobile robot. J. Intell. Fuzzy Syst. (2013). doi: 10.3233/IFS-130863 MathSciNetGoogle Scholar
  55. 55.
    Niknam, T., Khooban, M.H.: Fuzzy sliding mode control scheme for a class of non-linear uncertain chaotic systems. IET Sci. Meas. Technol. 7(5), 249–255 (2013). doi: 10.1049/iet-smt.2013.0039 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Taher Niknam
    • 1
  • Mohammad Hassan Khooban
    • 1
  • Abdollah Kavousifard
    • 1
  • Mohammad Reza Soltanpour
    • 2
  1. 1.Department of Electrical and Electronic EngineeringShiraz University of TechnologyShirazIran
  2. 2.Department of Electrical EngineeringShahid Sattari Aeronautical University of Science and TechnologyTehranIran

Personalised recommendations