Nonlinear Dynamics

, Volume 74, Issue 4, pp 1155–1168 | Cite as

Robust optimal attitude control of hexarotor robotic vehicles

  • Hao Liu
  • Dafizal Derawi
  • Jonghyuk Kim
  • Yisheng Zhong
Original Paper


Multirotor aerial robotic vehicles attract much attention due to their increased load capacity and high maneuverability. In this paper, a robust optimal attitude controller is proposed for a kind of multirotor helicopters—hexarotors. It consists of a nominal optimal controller and a robust compensator. The nominal controller is designed based on the linear quadratic regulation (LQR) method to achieve desired tracking of the nominal system, and the robust compensator is added to restrain the influence of uncertainties. The key contributions of this work are twofold: firstly, the closed-loop control system is robust against coupling and nonlinear dynamics, parametric uncertainties, and external disturbances; secondly, a decoupled and linear time-invariant control architecture making it ideal for real-time implementation. The attitude tracking errors are proven to be ultimately bounded with specified boundaries. Simulation and experimental results on the hexarotor demonstrate the effectiveness of the proposed attitude control method.


Hexarotor Robust control Optimal control Attitude control 



This work was supported by the National Natural Science Foundation of China under Grants 61174067, 61203071, and 61374054, as well as Shaanxi Province Natural Science Foundation Research Projection under Grants 2013JQ8038.


  1. 1.
    Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011) CrossRefGoogle Scholar
  2. 2.
    Zhu, B., Huo, W.: Robust nonlinear control for a model-scale helicopter with parameter uncertainties. Nonlinear Dyn. 73(1–2), 1139–1154 (2013) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Zhou, G.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011) CrossRefGoogle Scholar
  4. 4.
    Mittal, M., Prasad, J.V.R., Schrage, D.P.: Comparison of stability and control characteristics of two twin-lift helicopter. Nonlinear Dyn. 3(3), 199–223 (1992) CrossRefGoogle Scholar
  5. 5.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 10(10), 1195–1207 (2011) CrossRefGoogle Scholar
  7. 7.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012) CrossRefGoogle Scholar
  8. 8.
    Altug, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005) CrossRefGoogle Scholar
  9. 9.
    Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006) CrossRefGoogle Scholar
  11. 11.
    Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilization for quadrotor control. IET Control Theory Appl. 3(3), 303–314 (2009) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bertrand, S., Guenard, N., Hamel, T., Piet-Lahanier, H., Eck, L.: A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng. Pract. 19(10), 1099–1108 (2011) CrossRefGoogle Scholar
  13. 13.
    Aguilar-Ibanez, C., Sira-Ramirez, H., Suarez-Castanon, M.S., Martinez-Navarro, E., Moreno-Armendariz, M.A.: The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach. Int. J. Control 85(1), 69–77 (2012) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guerrero-Castellanos, J.F., Marchand, N., Hably, A., Lesecq, S., Delamare, J.: Bounded attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng. Pract. 19(8), 790–797 (2011) CrossRefGoogle Scholar
  15. 15.
    Sanca, A.S., Alsina, P.J., Cerqueira, J.J.F.: Dynamic modeling with nonlinear inputs and backstepping control for a hexarotor micro-aerial vehicle. In: Proceedings of Latin American Robotics Symposium and Intelligent Robotics Meeting, Sao Bernardo do Campo, Brazil, pp. 36–42 (2010) CrossRefGoogle Scholar
  16. 16.
    Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl. 4(11), 2343–2355 (2010) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5(9), 1140–1146 (2011) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Technol. 19(2), 465–473 (2011) CrossRefGoogle Scholar
  19. 19.
    Geering, H.P.: Optimal Control with Engineering Applications. Springer, London (2007) MATHGoogle Scholar
  20. 20.
    Zhong, Y.: Robust output tracking control of SISO plants with multiple operating points and with parametric and unstructured uncertainties. Int. J. Control 75(4), 219–241 (2002) CrossRefMATHGoogle Scholar
  21. 21.
    Liu, H., Lu, G., Zhong, Y.: Theory and experiments on robust LQR attitude control of a 3-DOF lab helicopter. In: Proceedings of the 30th Chinese Control Conference, Yantai, China, pp. 2335–2340 (2011) Google Scholar
  22. 22.
    Zheng, B., Zhong, Y.: Robust attitude regulation of a 3-DOF helicopter benchmark: theory and experiments. IEEE Trans. Ind. Electron. 58(2), 660–670 (2011) CrossRefGoogle Scholar
  23. 23.
    Arduino based arducopter UAV, the open source multi-rotor. Accessed 28 March 2013

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hao Liu
    • 1
    • 2
  • Dafizal Derawi
    • 3
  • Jonghyuk Kim
    • 3
  • Yisheng Zhong
    • 2
  1. 1.School of AstronauticsBeihang UniversityBeijingP.R. China
  2. 2.Department of Automation, TNListTsinghua UniversityBeijingP.R. China
  3. 3.Research School of EngineeringAustralian National UniversityACTAustralia

Personalised recommendations