Nonlinear Dynamics

, Volume 74, Issue 1–2, pp 381–394 | Cite as

Non-standard fractional Lagrangians

  • Rami Ahmad El-Nabulsi
Original Paper


Two mathematical physics’ approaches have recently gained increasing importance both in mathematical and in physical theories: (i) the fractional action-like variational approach which founds its significance in dissipative and non-conservative systems and (ii) the theory of non-standard Lagrangians which exist in some group of dissipative dynamical systems and are entitled “non-natural” by Arnold. Both approaches are discussed independently in the literature; nevertheless, we believe that the combination of both theories will help identifying more hidden solutions in certain classes of dynamical systems. Accordingly, we generalize the fractional action-like variational approach for the case of non-standard power-law Lagrangians of the form L 1+γ \((\gamma\in\mathbb{R})\) recently introduced by the author (Qual. Theory Dyn. Syst. doi: 10.1007/s12346-012-0074-0, 2012). Many interesting features are discussed in some details.


Fractional non-standard Lagrangians Nonlinear dynamics 


  1. 1.
    Baleanu, D., Guvenc Ziya, B., Tenreiro, J.A.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin (2009) Google Scholar
  2. 2.
    Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press/World Scientific, London/Singapore (2012) MATHGoogle Scholar
  3. 3.
    Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dreisigmeyer, D.W., Young, P.M.: Nonconservative Lagrangian mechanics: a generalized function approach. J. Phys. A 36, 8297–8310 (2003) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dreisigmeyer, D.W., Young, P.M.: Extending Bauer’s corollary to fractional derivatives. J. Phys. A, Math. Gen. 37(11), L117–121 (2004) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Rabei, E.M., Alhalholy, T.S., Taani, A.A.: On Hamiltonian formulation of non-conservative systems. Turk. J. Phys. 28, 213–221 (2004) Google Scholar
  8. 8.
    Cresson, J., Inizan, P.: Irreversibility, least action principle and causality. arXiv:0812.3529
  9. 9.
    Inizan, P.: Compatibility between fractional Hamiltonian systems. Int. J. Ecol. Econ. Stat. 9(F07), 83–91 (2007) MathSciNetGoogle Scholar
  10. 10.
    Almeida, R., Pooseh, S., Torres, D.F.M.: Fractional variational problems depending on indefinite integrals. Nonlinear Anal. 75(3), 1009–1025 (2012) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    El-Nabulsi, R.A.: A periodic functional approach to the calculus of variations and the problem of time dependent damped harmonic oscillators. Appl. Math. Lett. 24(10), 1647–1653 (2011) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Malinowska, A.B., Ammi, M.R.S., Torres, D.F.M.: Composition functionals in fractional calculus of variations. Commun. Frac. Calc. 1, 32–40 (2010) Google Scholar
  14. 14.
    Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14(4), 523–537 (2011) MathSciNetMATHGoogle Scholar
  15. 15.
    Malinowska, A.B., Torres, D.F.M.: Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl. Math. Comput. 218(9), 5099–5111 (2012) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Atanacković, T.M., Konjik, S., Pilipović, S., Simić, S.: Variational problems with fractional derivatives: invariance conditions and Noether’s theorem. Nonlinear Anal., Theory Methods Appl. 71, 1504–1517 (2009) CrossRefMATHGoogle Scholar
  17. 17.
    Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A 41(9), 095201–095213 (2008) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29(2), 417–437 (2011) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Discrete-time fractional variational problems. Signal Process. 91(3), 513–524 (2011) CrossRefMATHGoogle Scholar
  20. 20.
    El-Nabulsi, R.A.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005) Google Scholar
  21. 21.
    El-Nabulsi, R.A.: A fractional action-like variational approach of some classical, quantum and geometrical dynamics. Int. J. Appl. Math. 17(3), 299–317 (2005) MathSciNetMATHGoogle Scholar
  22. 22.
    El-Nabulsi, R.A., Torres, D.F.M.: Fractional actionlike variational problems. J. Math. Phys. 49(5), 053521 (2008) MathSciNetCrossRefGoogle Scholar
  23. 23.
    El-Nabulsi, R.A.: Gravitons in fractional action cosmology. Int. J. Theor. Phys. 51(12), 3978–3992 (2012) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations in terms of a generalized fractional integral and applications to physics. Abstr. Appl. Anal. 2012, 871912 (2012) MathSciNetCrossRefGoogle Scholar
  25. 25.
    El-Nabulsi, R.A.: Fractional quantum Euler–Cauchy equation in the Schrodinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics. Mod. Phys. Lett. B 23(28), 3369–3386 (2009) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    El-Nabulsi, R.A.: Non-standard Lagrangians with differential operators. J. Nonlinear Anal. Optim. (in press) Google Scholar
  27. 27.
    El-Nabulsi, R.A.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 217(22), 9492–9496 (2011) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    El-Nabulsi, R.A., Wu, G.-C.: Fractional complexified field theory from Saxena–Kumbhat fractional integral, fractional derivative of order alfa–beta and dynamical fractional integral exponent. African Disp. J. Math. 13(2), 45–61 (2012) MathSciNetMATHGoogle Scholar
  29. 29.
    El-Nabulsi, R.A.: The fractional Boltzmann transport equation. Comput. Math. Appl. 65, 1568–1575 (2011) MathSciNetCrossRefGoogle Scholar
  30. 30.
    El-Nabulsi, R.A.: Fractional quantum field theories on multifractal sets. Am. J. Eng. Appl. Sci. 4, 133–141 (2009) Google Scholar
  31. 31.
    El-Nabulsi, R.A.: Fractional field theories from multidimensional fractional variational problems. Int. J. Geom. Methods Mod. Phys. 5, 863–892 (2008) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Calcagni, G.: Quantum field theory, gravity and cosmology in a fractal universe. J. High Energy Phys. 1003, 120 (2010) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Calcagni, G.: Fractal universe and quantum gravity. Phys. Rev. Lett. 104, 251301 (2010) CrossRefGoogle Scholar
  34. 34.
    El-Nabulsi, R.A.: Extended fractional calculus of variations, complexified geodesics and Wong’s fractional equation on complex place and Lie algebroids. Ann. Univ. Maria Curie 1, 49–67 (2011) MathSciNetGoogle Scholar
  35. 35.
    El-Nabulsi, R.A.: The fractional calculus of variations from extended Erdelyi–Kober operator. Int. J. Mod. Phys. B 23(16), 3349–3361 (2009) MathSciNetCrossRefGoogle Scholar
  36. 36.
    El-Nabulsi, R.A.: Universal fractional Euler–Lagrange equation from a generalized fractional derivate operator, Central Europe. J. Phys. 9(1), 250–256 (2010) MathSciNetGoogle Scholar
  37. 37.
    Alekseev, A.I., Arbuzov, B.A.: Classical Yang–Mills field theory with nonstandard Lagrangian. Theor. Math. Phys. 59, 372–378 (1984) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) CrossRefMATHGoogle Scholar
  39. 39.
    Carinena, J.G., Ranada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703–062721 (2005) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Chandrasekar, V.K., Pandey, S.N., Senthilvelan, M., Lakshmanan, M.: Simple and unified approach to identify integrable nonlinear oscillators and systems. J. Math. Phys. 47, 023508–023545 (2006) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. Phys. Rev. E 72, 066203 (2005) CrossRefGoogle Scholar
  42. 42.
    Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A, Math. Theor. 41, 055205–055222 (2008) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42(15), 2645–2652 (2009) MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: A nonlinear oscillator with unusual dynamical properties. In: Proceedings of the Third National Systems and Dynamics, India, pp. 1–4 (2006) Google Scholar
  45. 45.
    Dimitrijevic, D.D., Milosevic, M.: About non-standard Lagrangians in cosmology. AIP Conf. Proc., 1472, 41–46 (2012) CrossRefGoogle Scholar
  46. 46.
    Tyurin, N.A.: Nonstandard Lagrangian tori and pseudotoric structures. Teor. Mat. Fiz. 171, 321–325 (2012) CrossRefGoogle Scholar
  47. 47.
    Lukkassem, D.: Reiterated homogenization of non-standard Lagrangians. C. R. Acad. Sci. Paris 332, 999–1004 (2001) CrossRefGoogle Scholar
  48. 48.
    El-Nabulsi, R.A.: Quantum field theory from an exponential action functional. Indian J. Phys. 87, 379–383 (2013) CrossRefGoogle Scholar
  49. 49.
    El-Nabulsi, R.A.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Indian J. Phys. 87, 465–470 (2013); Erratum (to appear) CrossRefGoogle Scholar
  50. 50.
    El-Nabulsi, R.A.: Nonlinear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. (2012). doi: 10.1007/s12346-012-0074-0 Google Scholar
  51. 51.
    El-Nabulsi, R.A., Soulati, T., Rezazadeh, H.: Non-standard complex Lagrangian dynamics. J. Adv. Res. Dyn. Cont. Syst. 5(1), 50–62 (2013) MathSciNetGoogle Scholar
  52. 52.
    Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. II, 129–148 (1950) MathSciNetCrossRefGoogle Scholar
  53. 53.
    Cisneros-Parra, J.U.: On singular Lagrangians and Dirac’s method. Rev. Mex. Fis. 58, 61–68 (2012) MathSciNetGoogle Scholar
  54. 54.
    Havelkova, M.: A geometric analysis of dynamical systems with singular Lagrangians. Math. Commun. 19, 169–178 (2011) MathSciNetMATHGoogle Scholar
  55. 55.
    Zhao, L., Yu, P., Xu, W.: Hamiltonian description of singular Lagrangian systems with spontaneously broken time translation symmetry. Mod. Phys. Lett. A 28(5), 1350002–13500015 (2013) MathSciNetCrossRefGoogle Scholar
  56. 56.
    Carinena, J.F., Fermandez-Nunez, J., Ranada, M.F.: On singular Lagrangians affine in velocities. J. Phys. A 36, 3789–3808 (2003) MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Carinena, J.F., Lopez, C., Ranada, M.F.: Geometric Lagrangian approach to first order systems and applications. J. Math. Phys. 29, 1134–1142 (1988) MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Carinena, F.: Singular Lagrangians. Fortschr. Phys. 38, 641–680 (1990) MathSciNetCrossRefGoogle Scholar
  59. 59.
    Carinena, J.F., Ranada, M.F., Santander, F.: Lagrangian formalism for nonlinear second-order Riccati equations: one-dimensional integrability and two-dimensional super integrability. J. Math. Phys. 46, 062703–062721 (2005) MathSciNetCrossRefGoogle Scholar
  60. 60.
    Saha, A., Talukdar, B.: On the non-standard Lagrangian equations. arXiv:1301.2667
  61. 61.
    Cieslinski, J.I., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A, Math. Theor. 43, 175205–175220 (2010) MathSciNetCrossRefGoogle Scholar
  62. 62.
    Garousi, M.R., Sami, M., Tsujikawa, S.: Constraints on Dirac–Born–Infeld type dark energy models from varying alpha. Phys. Rev. D 71, 083005 (2005) CrossRefGoogle Scholar
  63. 63.
    Copeland, E.J., Garousi, M.R., Sami, M., Tsujikawa, S.: What is needed of a tachyon if it is to be the dark energy? Phys. Rev. D 71, 043003 (2005) CrossRefGoogle Scholar
  64. 64.
    Dimitrijevic, D.D., Milosevic, M.: About non-standard Lagrangians in cosmology. AIP Conf. Proc., 1472, 41–46 (2012) CrossRefGoogle Scholar
  65. 65.
    Alekseev, A.I., Vshivtsev, A.S., Tatarintsev, A.V.: Classical non-Abelian solutions for non-standard Lagrangians. Theor. Math. Phys. 77(2), 1189–1197 (1988) CrossRefGoogle Scholar
  66. 66.
    Ghosh, S., Ghoudhuri, A., Talukdar, B.: On the quantization of damped harmonic oscillator. Acta Phys. Pol. B 40(1), 49–57 (2009) Google Scholar
  67. 67.
    Emden, R.: Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme, Teubner, Leipzig (1907) Google Scholar
  68. 68.
    Wrubel, H.M.: Stellar interiors. In: Flugge, S. (ed.) Encyclopedia of Physics. Springer, Berlin (1958) Google Scholar
  69. 69.
    Muatjetjeja, B., Khalique, C.M.: Exact solutions of the generalized Lane–Emden equations of the first and second kind. Pramana J. Phys. 77(3), 545–554 (2011) CrossRefGoogle Scholar
  70. 70.
    Dixon, J.M., Tuszynski, J.A.: Solutions of a generalized Emden equation and their physical significance. Phys. Rev. A 41, 4166–4173 (1990) MathSciNetCrossRefGoogle Scholar
  71. 71.
    Mukherjee, S., Roy, B., Chatterjee, P.: Solution of modified equations of Emden-type by differential transform method. J. Mod. Phys. 2(6), 559–563 (2011) CrossRefGoogle Scholar
  72. 72.
    Khalique, C.M., Mahomed, F.M., Muatjetjeja, B.: Lagrangian formulation of a generalized Lane–Emden equation and double reduction. J. Nonlinear Math. Phys. 15(2), 152–161 (2008) MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Alexanian, G., MacKenzie, R., Paranjape, M.B., Ruel, J.: Path integration and perturbation theory with complex Euclidean actions. Phys. Rev. D 77, 105014 (2008) MathSciNetCrossRefGoogle Scholar
  74. 74.
    Alexanian, G., MacKenzie, R., Paranjape, M.B., Ruel, J.: Problems with complex actions. hep-th/0609146
  75. 75.
    Goldfarb, Y., Tannor, D.J.: Interference in Bohmian mechanics with complex action. arXiv:0706.3507
  76. 76.
    Goldfarb, Y., Degani, I., Tannor, D.J.: Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics. quant-ph/0604150
  77. 77.
    Hayward, S.A.: Complex lapse, complex action and path integrals. Phys. Rev. D 53, 5664–5669 (1996) MathSciNetCrossRefGoogle Scholar
  78. 78.
    Wright, E.M.: Path integral approach to the Schrödinger equation with a complex potential. Phys. Lett. A 104(3), 119–122 (1984) MathSciNetCrossRefGoogle Scholar
  79. 79.
    Sexty, D.: Complex actions and stochastic quantization. Talk given at University of Heidelberg, St. Goar, September 2009 Google Scholar
  80. 80.
    Nielsen, H.B., Ninomiya, M.: What comes beyond the standard model. In: The Proceedings of Bled, Slovenia, pp. 144–185 (2007) Google Scholar
  81. 81.
    Nielsen, H.B.: Initial condition model from imaginary part of action and the information loss. arXiv:0911.3859
  82. 82.
    Nagao, K., Nielsen, H.B.: Formulation of complex action theory. Prog. Theor. Phys. 126, 1021–1049 (2011) CrossRefMATHGoogle Scholar
  83. 83.
    El-Nabulsi, R.A.: Lagrangian and Hamiltonian dynamics with imaginary time. J. Anal. Appl. 18, 283–295 (2012) MathSciNetMATHGoogle Scholar
  84. 84.
    Leon, D., Rodrigues, M.P.R.: Generalized Classical Mechanics and Field Theory, North-Holland, Amsterdam (1985) MATHGoogle Scholar
  85. 85.
    Simon, J.Z.: Higher-derivatives Lagrangians, nonlocality, problems, and solutions. Phys. Rev. D 41, 3720–3733 (1990) MathSciNetCrossRefGoogle Scholar
  86. 86.
    Vitagliano, L.: On higher derivatives as constraints in field theory: a geometric perspective. Int. J. Geom. Methods Mod. Phys. 08, 1687–1693 (2011) MathSciNetCrossRefGoogle Scholar
  87. 87.
    Vitagliano, L.: The Lagrangian–Hamiltonian formalism for higher order fields theories. J. Geom. Phys. 60, 857–873 (2010) MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Aldaya, V., de Azcarraga, J.: Higher order Hamiltonian formalism in field theory. J. Phys. A, Math. Gen. 13, 2545–2551 (1982) CrossRefGoogle Scholar
  89. 89.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. NBS Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1964) MATHGoogle Scholar
  90. 90.
    Gladwin Pradeep, R., Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: Non-standard conserved Hamiltonian structures in dissipative/damped systems: nonlinear generalizations of damped harmonic oscillator. J. Math. Phys. 50, 052901–052916 (2009) MathSciNetCrossRefGoogle Scholar
  91. 91.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) MATHGoogle Scholar
  92. 92.
    Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach, Amsterdam (1993) MATHGoogle Scholar
  93. 93.
    Razminia, A., Majid, V.J., Dizaji, A.F.: An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index. Nonlinear Dyn. 69, 1263–1284 (2012) CrossRefMATHGoogle Scholar
  94. 94.
    Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004) CrossRefMATHGoogle Scholar
  95. 95.
    Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53, 215–222 (2008) MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002) MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    Herzallah, M.A.E., Baleanu, D.: Fractional Euler–Lagrange equations revisited. Nonlinear Dyn. 69, 977–982 (2012) MathSciNetCrossRefMATHGoogle Scholar
  98. 98.
    Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009) MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58, 385–391 (2009) MathSciNetCrossRefMATHGoogle Scholar
  100. 100.
    El-Nabulsi, R.A.: Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent. Comput. Appl. Math. (2013). doi: 10.1007/s40314-013-0053-3 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceNeijiang Normal UniversityNeijiangChina

Personalised recommendations