Nonlinear Dynamics

, Volume 74, Issue 1–2, pp 297–306 | Cite as

Anticipating spike synchronization in nonidentical chaotic neurons

  • T. Pyragienė
  • K. Pyragas
Original Paper


Anticipating synchronization is investigated in nonidentical chaotic systems unidirectionally coupled in a master-slave configuration without a time-delay feedback. We show that if the parameters of chaotic master and slave systems are mismatched in such a way that the mean frequency of a free slave system is greater than the mean frequency of a master system, then the phase synchronization regime can be achieved with the advanced phase of the slave system. In chaotic neural systems, this leads to the anticipating spike synchronization: unidirectionally coupled neurons synchronize in such a way that the slave neuron anticipates the chaotic spikes of the master neuron. We demonstrate our findings with coupled Rössler systems as well as with two different models of coupled neurons, namely, the Hindmarsh–Rose neurons and the adaptive exponential integrate-and-fire neurons.


Anticipating chaotic synchronization Rössler system Hindmarsh–Rose neuron Adaptive exponential integrate-and-fire neuron 



This research was funded by the European Social Fund under the Global Grant measure (Grant No. VP1-3.1-ŠMM-07-K-01-025).


  1. 1.
    Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–47 (1983) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) CrossRefGoogle Scholar
  4. 4.
    Pyragas, K.: Synchronization of coupled time-delay systems: analytical estimations. Phys. Rev. E 58, 3067–3071 (1998) CrossRefGoogle Scholar
  5. 5.
    Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995) CrossRefGoogle Scholar
  6. 6.
    Pyragas, K.: Weak and strong synchronization of chaos. Phys. Rev. E 54, R4508–R4512 (1996) CrossRefGoogle Scholar
  7. 7.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillations. Phys. Rev. Lett. 76, 1804 (1996) CrossRefGoogle Scholar
  8. 8.
    Ahn, C.K.: Adaptive neural network H chaos synchronization. Nonlinear Dyn. 60, 295–302 (2010) CrossRefMATHGoogle Scholar
  9. 9.
    Ahn, C.K.: L 2L chaos synchronization. Prog. Theor. Phys. 123, 421–430 (2010) CrossRefMATHGoogle Scholar
  10. 10.
    Ahn, C.K., Jung, S.-T., Kang, S.-K., Joo, S.-C.: Adaptive H synchronization for uncertain chaotic systems with external disturbance. Commun. Nonlinear Sci. Numer. Simul. 15, 2168–2177 (2010) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ahn, C.K.: Takagi-Sugeno fuzzy receding horizon H chaotic synchronization and its application to the Lorenz system. Nonlinear Anal. Hybrid Syst. 9, 1–8 (2013) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Voss, H.: Anticipating chaotic synchronization. Phys. Rev. E 61, 5115–5119 (2000) CrossRefGoogle Scholar
  13. 13.
    Voss, H.: Dynamic long-term anticipation of chaotic states. Phys. Rev. Lett. 87, 014102 (2001) CrossRefGoogle Scholar
  14. 14.
    Pyragas, K., Pyragienė, T.: Coupling design for a long-term anticipating synchronization of chaos. Phys. Rev. E 78, 046217 (2008) CrossRefGoogle Scholar
  15. 15.
    Pyragas, K., Pyragienė, T.: Extending anticipation horizon of chaos synchronization schemes with time-delay coupling. Philos. Trans. R. Soc. A, Mat. Phys. Eng. Sci. 368, 305–317 (2010) CrossRefMATHGoogle Scholar
  16. 16.
    Masoller, C.: Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 86, 2782–2785 (2001) CrossRefGoogle Scholar
  17. 17.
    Kostur, M., Hänggi, P., Talkner, P., Mateos, J.L.: Anticipated synchronization in coupled inertial ratchets with time-delayed feedback: a numerical study. Phys. Rev. E 72, 036210 (2005) CrossRefGoogle Scholar
  18. 18.
    Ciszak, M., Calvo, O., Masoller, C., Mirasso, C.R., Toral, R.: Anticipating the response of excitable systems driven by random forcing. Phys. Rev. Lett. 90, 204102 (2003) CrossRefGoogle Scholar
  19. 19.
    Ciszak, C., Marino, F., Toral, R., Balle, S.: Dynamical mechanism of anticipating synchronization in excitable systems. Phys. Rev. Lett. 93, 114102 (2004) CrossRefGoogle Scholar
  20. 20.
    Ciszak, C., Mirasso, C.R., Toral, R., Calvo, O.: Predict-prevent control method for perturbed excitable systems. Phys. Rev. E 79, 046203 (2009) CrossRefGoogle Scholar
  21. 21.
    Xu, S., Yang, Y., Song, L.: Control-oriented approaches to anticipating synchronization of chaotic deterministic ratchets. Phys. Lett. A 373, 2226–2236 (2009) CrossRefMATHGoogle Scholar
  22. 22.
    Mayol, C., Mirasso, C.R., Toral, R.: Anticipated synchronization and the predict-prevent control method in the FitzHugh–Nagumo model system. Phys. Rev. E 85, 056216 (2012) CrossRefGoogle Scholar
  23. 23.
    Weia, H., Li, L.: Estimating parameters by anticipating chaotic synchronization. Chaos 20, 023112 (2010) CrossRefGoogle Scholar
  24. 24.
    Voss, H.: Real-time anticipating of chaotic states of an electronic circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 1619–1625 (2002) CrossRefGoogle Scholar
  25. 25.
    Corron, N.J., Blakely, J.N., Pethel, S.D.: Lag and anticipating synchronization without time-delay coupling. Chaos 15, 023110 (2005) CrossRefGoogle Scholar
  26. 26.
    Pisarchik, A.N., Jaimes-Reategui, R., Garcia-Lopez, H.: Synchronization of coupled bistable chaotic systems: experimental study. Phil. Trans. R. Soc. A 366, 459–473 (2008) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Blakely, J.N., Pruitt, M.W., Corron, N.J.: Time shifts and correlations in synchronized chaos. Chaos 18, 013117 (2008) CrossRefGoogle Scholar
  28. 28.
    Srinivasan, K., Senthilkumar, D.V., Murali, K., Lakshmanan, M., Kurths, J.: Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Chaos 21, 023119 (2011) CrossRefGoogle Scholar
  29. 29.
    Srinivasan, K., Senthilkumar, D.V., Mohamed, R., Murali, K., Lakshmanan, M., Kurths, J.: Anticipating, complete and lag synchronizations in RC phase-shift network based coupled Chua’s circuits without delay. Chaos 22, 023124 (2012) CrossRefGoogle Scholar
  30. 30.
    Sivaprakasam, S., Shahverdiev, E.M., Spencer, P.S., Shore, K.A.: Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 87, 154101 (2001) CrossRefGoogle Scholar
  31. 31.
    Matias, F.S., Carelli, P.V., Mirasso, C.R., Copelli, M.: Anticipated synchronization in a biologically plausible model of neuronal motifs. Phys. Rev. E 84, 021922 (2011) CrossRefGoogle Scholar
  32. 32.
    Rieke, F., Warland, D., de Royter van Steveninck, R., Bialek, W.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1997) Google Scholar
  33. 33.
    Rössler, O.E.: An equation for continuos chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  34. 34.
    Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984) CrossRefGoogle Scholar
  35. 35.
    Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005) CrossRefGoogle Scholar
  36. 36.
    Garbor, D.: Theory of communication. J. IEE Lond. 93, 429–457 (1946) Google Scholar
  37. 37.
    Shuai, J.-W., Durand, D.M.: Phase synchronization in two coupled chaotic neurons. Phys. Lett. A 264, 289–297 (1999) MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 335–347 (2008) MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Touboul, J., Brette, R.: Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 319–334 (2008) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Center for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations