Nonlinear Dynamics

, Volume 74, Issue 1–2, pp 95–106 | Cite as

Leaderless and leader-follower cooperative control of multiple marine surface vehicles with unknown dynamics

Original Paper


Unlike the tracking control of a single marine vehicle, this paper considers the leaderless and leader-follower cooperative control of multiple marine surface vehicles subject to unknown nonlinear dynamics and ocean disturbances, all seeking to maintain a relative formation. For both cases, a cooperative control design approach is proposed by integrating neural networks, a backstepping technique, and graph theory. It is shown that with the developed cooperative controllers, formation behavior among vehicles can be achieved for any undirected connected communication graphs without requiring the accurate model of each vehicle. Based on Lyapunov stability analysis, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded, and cooperative tracking errors converge to a small neighborhood of the origin. Simulation results are given to show the efficacy of the proposed methods.


Cooperative control Marine surface vehicles Neural networks Nonlinear dynamics 



The authors would like to thank the editor and any reviewers for their constructive comments and suggestions, which have improved the quality of the paper. This work was supported in part by the National Nature Science Foundation of China under Grants 61273137, 51209026, 61074017, 51179019, and in part by the Fundamental Research Funds for the Central Universities under Grant 3132013037, and in part by the Program for Liaoning Excellent Talents in University under Grant LR 2012016.


  1. 1.
    Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2007) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lin, Z.Y., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zou, A.M., Kumar, K.D.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70(2), 1283–1296 (2012) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Li, H.Q., Liao, X.F., Dong, T., Xiao, L.: Second-order consensus seeking in directed networks of multi-agent dynamical systems via generalized linear local interaction protocols. Nonlinear Dyn. 70(3), 2213–2226 (2012) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Liu, J., Liu, Z.X., Chen, Z.Q.: Coordinative control of multi-agent systems using distributed nonlinear output regulation. Nonlinear Dyn. 67(3), 1871–1881 (2012) CrossRefMATHGoogle Scholar
  8. 8.
    Hong, Y.G., Hu, J.P., Gao, L.X.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56(7), 474–483 (2007) CrossRefMATHGoogle Scholar
  10. 10.
    Song, Q., Cao, J.D., Yu, W.W.: Second-order leader-following consensus of nonlinear multi-agents via pinning control. Syst. Control Lett. 59(9), 553–562 (2010) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Meng, Z.Y., Ren, W., Cao, Y., You, Z.: Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(1), 75–88 (2010) CrossRefGoogle Scholar
  12. 12.
    Hu, J.P., Hong, Y.G.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A 374, 853–863 (2007) CrossRefGoogle Scholar
  13. 13.
    Dong, W.J., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic dynamic system. Automatica 45(3), 706–710 (2009) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zhang, H.W., Lewis, F.L., Das, A.: Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans. Autom. Control 56(8), 1948–1952 (2011) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hou, Z.G., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(3), 636–647 (2009) CrossRefGoogle Scholar
  16. 16.
    Das, A., Lewis, F.L.: Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 59(9), 543–552 (2010) Google Scholar
  17. 17.
    Das, A., Lewis, F.L.: Cooperative adaptive control for synchronization of second-order system with unknown nonlinearities. Int. J. Robust Nonlinear Control 21(13), 1509–1524 (2011) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhang, H.W., Lewis, F.L.: Adaptive cooperative tracking control of higher order nonlinear systems with unknown dynamics. Automatica 48(7), 1432–1439 (2012) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hu, G.Q.: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61(1), 134–142 (2012) CrossRefMATHGoogle Scholar
  20. 20.
    Khoo, S.Y., Xie, L.H., Man, Z.H.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 219–228 (2009) CrossRefGoogle Scholar
  21. 21.
    Chopra, N., Spong, M.W.: Passivity-based control of multi-agent systems. Adv. Robot Control 107–134 (2007) Google Scholar
  22. 22.
    Peng, Z.H., Wang, D., Hu, X.J.: Robust adaptive formation control of underactuated autonomous surface vehicles with uncertain dynamics. IET Control Theory Appl. 5(12), 1378–1387 (2011) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Peng, Z.H., Wang, D., Chen, Z.Y., Hu, X.J., Lan, W.Y.: Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Trans. Control Syst. Technol. 21(2), 513–520 (2013) CrossRefGoogle Scholar
  24. 24.
    Skjetne, R., Moi, S., Fossen, T.I.: Nonlinear formation control of marine craft. In: IEEE Conference on Decision and Control, vol. 2, Las Vegas, Nevada, USA, pp. 1699–1704 (2002) Google Scholar
  25. 25.
    Arrichiello, F., Chiaverini, S., Fossen, T.I.: Formation control of underactuated surface vessels using the null-space-based behavioral control. In: Inter. Conf. on Intel. Robot. and Systems, Beijing, China, pp. 5942–5947 (2006) Google Scholar
  26. 26.
    Ihle, I.F., Arcak, M., Fossen, T.I.: Passivity-based designs for synchronized path following. Automatica 43(9), 1508–1518 (2007) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Tee, K.P., Ge, S.S.: Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Trans. Control Syst. Technol. 14(4), 750–756 (2006) CrossRefGoogle Scholar
  28. 28.
    Dai, S.L., Wang, C., Luo, F.: Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8(4), 801–810 (2012) CrossRefGoogle Scholar
  29. 29.
    Chen, M., Ge, S.S., Choo, Y.S.: Neural network tracking control of ocean surface vessels with input saturation. In: International Conf. on Automation and Logistics, Shenyang, China, pp. 85–89 (2009) CrossRefGoogle Scholar
  30. 30.
    Pan, C.Z., Lai, X.Z., Yang, S.X., Wu, M.: An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics. Expert Syst. Appl. 40(5), 1629–1635 (2013) CrossRefGoogle Scholar
  31. 31.
    Wang, D., Huang, J.: Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form. Automatica 38(8), 1365–1372 (2002) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Fossen, T.I.: Marine Control System: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002) Google Scholar
  33. 33.
    Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 6(1), 195–202 (2005) CrossRefGoogle Scholar
  34. 34.
    Krstić, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995) Google Scholar
  35. 35.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (1996) Google Scholar
  36. 36.
    Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Princeton University Press, Princeton (2009) MATHGoogle Scholar
  37. 37.
    Skjetne, R., Fossena, T.I., Kokotovic, P.V.: Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica 41(2), 289–298 (2005) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Zhouhua Peng
    • 1
  • Dan Wang
    • 1
  • Tieshan Li
    • 2
  • Zhiliang Wu
    • 1
  1. 1.School of Marine EngineeringDalian Maritime UniversityDalianP.R. China
  2. 2.School of NavigationDalian Maritime UniversityDalianP.R. China

Personalised recommendations