Skip to main content
Log in

Applications of the integral equation method to delay differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we compare two approaches for determining the amplitude equations; namely, the integral equation method and the method of multiple scales. To describe and compare the methods, we consider three examples: the parametric resonance of a Van der Pol oscillator under state feedback control with a time delay, the primary resonance of a harmonically forced Duffing oscillator under state feedback control with a time delay, and the primary resonance together with 1:1 internal resonance of a two degree-of-freedom model. Using the integral equation method and the method of multiple scales, the amplitude equations are obtained. The stability of the periodic solution is examined by using the Floquet theorem together with the Routh–Hurwitz criterion (without time delay) and the Nyquist criterion (with time delay). By comparison with the solution obtained by the numerical integration, we find that the accuracy of the integral equation method is much better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Non-linear Oscillations. Wiley, New York (1979)

    Google Scholar 

  2. Nayfeh, A.H.: Perturbation Techniques. Wiley, New York (1979)

    Google Scholar 

  3. Maccari, A.: The response of a parametrically excited van der pol oscillator to a time delay state feedback. Nonlinear Dyn. 26, 105–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Maccari, A.: Delayed feedback control for a parametrically excited van der pol oscillator. Phys. Scr. 76, 526–532 (2007)

    Article  Google Scholar 

  5. Maccari, A.: Vibration amplitude control for a van der pol-Duffing oscillator with time delay. J. Sound Vib. 317, 20–29 (2008)

    Article  Google Scholar 

  6. Maccari, A.: Vibration control for an externally excited nonlinear system. Phys. Scr. 70, 79–85 (2004)

    Article  MATH  Google Scholar 

  7. Hu, H., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15, 311–327 (1998)

    Article  MATH  Google Scholar 

  8. El-Bassiouny, A.F.: Resonances of a nonlinear SDOF system with time-delay in linear feedback control. Phys. Scr. 81, 015007 (2010) (12 pp.)

    Article  Google Scholar 

  9. El-Bassiouny, A.F.: Nonlinear analysis for a ship with a general roll-damping model. Phys. Scr. 75, 691–701 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, Y.Y., Xu, J.: Mechanism analysis of delayed nonlinear vibration absorber. Chin. J. Theor. Appl. Mech. 40(1), 98–106 (2008)

    MathSciNet  Google Scholar 

  11. Schmidt, G., Tondl, A.: Nonlinear Vibrations. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  12. Hu, H.Y., Wang, Z.H.: Calculation of the rightmost characteristic root of retarded time-delay systems via Lambdert W function. J. Sound Vib. 315, 757–767 (2008)

    Google Scholar 

  13. Fu, M.Y., Olbrot, A.W., Polis, M.P.: Robust stability for time-delay systems: the edge theorem and graphical tests. IEEE Trans. Autom. Control 34, 813–820 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wahi, P., Chatterjee, A.: Garlerkin projections for delay differential equations. ASME J. Dyn. Syst. Meas. Control 127, 80–87 (2005)

    Article  Google Scholar 

  15. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, H.Y., Wang, Z.H.: Singular perturbation methods for nonlinear dynamic systems with time delays. Chaos Solitons Fractals 40, 13–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, H.L., Hu, H.Y.: Remarks on the perturbation methods in solving the second-order delay differential equations. Nonlinear Dyn. 33, 379–398 (2003)

    Article  MATH  Google Scholar 

  18. Das, S.L., Chatterjee, A.: Second order multiple scales for oscillators with large delay. Nonlinear Dyn. 39, 375–394 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the State Key Program of National Natural Science Foundation of China under Grant No. 11032009 and National Natural Science Foundation of China under Grant No. 11272236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Xu, J. Applications of the integral equation method to delay differential equations. Nonlinear Dyn 73, 2241–2260 (2013). https://doi.org/10.1007/s11071-013-0938-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0938-0

Keywords

Navigation