Advertisement

Nonlinear Dynamics

, Volume 73, Issue 3, pp 1863–1872 | Cite as

Combination synchronization of three different order nonlinear systems using active backstepping design

  • Zhaoyan Wu
  • Xinchu Fu
Original Paper

Abstract

In this paper, two kinds of combination synchronization between two drive systems and one response system are investigated using active backstepping design. Firstly, increased-order combination synchronization between Lorenz system, Rössler system and hyperchaotic Lü system is considered. Secondly, reduced-order combination synchronization between hyperchaotic Lorenz system, hyperchaotic Chen system and Lü system is considered. According to Lyapunov stability theory and active backstepping design method, the corresponding controllers are both designed. Finally, several numerical examples are provided to illustrate the obtained results.

Keywords

Combination synchronization Different order Chaotic Active backstepping control 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their very helpful suggestions and comments. This research is jointly supported by the Tianyuan Special Funds of NSFC Grant 11226242, the NSFC grant 11072136, the Natural Science Foundation of Jiangxi Province of China (20122BAB211006), the Shanghai Univ. Leading Academic Discipline Project (A.13-0101-12-004), and a grant of “The First-class Discipline of Universities in Shanghai”.

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. I 38, 453–456 (1991) CrossRefGoogle Scholar
  3. 3.
    Mainieri, R., Rehacek, J.: Projective synchronization in the three-dimensional chaotic system. Phys. Rev. Lett. 82, 3042–3045 (1999) CrossRefGoogle Scholar
  4. 4.
    Xu, D.L., Chee, C.Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys. Rev. E 66, 046218 (2002) CrossRefGoogle Scholar
  5. 5.
    Ma, Z.J., Liu, Z.R., Zhang, G.: A new method to realize cluster synchronization in connected chaotic networks. Chaos 16, 023103 (2006) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Sun, W.G., Yang, Y.Y., Li, C.P., Liu, Z.R.: Synchronization inside complex dynamical networks with double time-delays and nonlinear inner-coupling functions. Int. J. Mod. Phys. B 25, 1531–1541 (2011) CrossRefGoogle Scholar
  7. 7.
    Xu, Y.H., Zhou, W.N., Fang, J.A., Sun, W.: Adaptive synchronization of uncertain chaotic systems with adaptive scaling function. J. Franklin Inst. 348, 2406–2416 (2011) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Rao, P.C., Wu, Z.Y., Liu, M.: Adaptive projective synchronization of dynamical networks with distributed time delays. Nonlinear Dyn. 67, 1729–1736 (2012) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Guan, J.B.: Function projective synchronization of a class of chaotic systems with uncertain parameters. Math. Probl. Eng. 2012, 431752 (2012) CrossRefGoogle Scholar
  10. 10.
    Yu, W.W., Chen, G.R., Cao, J.D.: Adaptive synchronization of certain and uncertain coupled complex networks. Asian J. Control 13, 418–429 (2011) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Sun, W.G., Zhang, J.Y., Li, C.P.: Synchronization analysis of two coupled complex networks with time delays. Discrete Dyn. Nat. Soc. 2011, 209321 (2011) MathSciNetGoogle Scholar
  12. 12.
    Deng, L.P., Wu, Z.Y.: Impulsive cluster synchronization in community network with nonidentical nodes. Commun. Theor. Phys. 58, 525–530 (2012) MATHCrossRefGoogle Scholar
  13. 13.
    Ricardo, F., Gualberto, S.P.: Synchronization of chaotic systems with different order. Phys. Rev. E 65, 036226 (2002) CrossRefGoogle Scholar
  14. 14.
    Ho, M.C., Hung, Y.C., Liu, Z.Y., Jiang, I.M.: Reduced order synchronization of chaotic systems with parameters unknown. Phys. Lett. A 348, 251–259 (2006) CrossRefGoogle Scholar
  15. 15.
    Mossa Al-sawalha, M., Noorani, M.S.M.: Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 15, 3022–3034 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Mossa Al-sawalha, M., Noorani, M.S.M.: Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 17, 1908–1920 (2012) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vincent, E., Guo, R.W.: A simple adaptive control for full and reduced-order synchronization of uncertain timevarying chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 14, 3925–3932 (2009) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hu, M.F., Xu, Z.Y., Zhang, R., Hu, A.H.: Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Phys. Lett. A 365, 315–327 (2007) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cai, N., Li, W.Q., Jing, Y.W.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64, 385–393 (2011) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Motallebzadeh, F., Motlagh, M.R.J., Cherati, Z.R.: Synchronization of different-order chaotic systems: adaptive active vs optimal control. Commun. Nonlinear Sci. Numer. Simul. 17, 3643–3657 (2012) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Mossa Al-sawalha, M., Noorani, M.S.M.: Adaptive increasing-order synchronization and anti-synchronization of chaotic systems with uncertain parameters. Chin. Phys. Lett. 28, 110507 (2011) CrossRefGoogle Scholar
  22. 22.
    Bowong, S.: Stability analysis for the synchronization of chaotic systems with different order: application to secure communications. Phys. Lett. A 326, 102–113 (2004) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Luo, R.Z., Wang, Y.L., Deng, S.C.: Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21, 043114 (2011) CrossRefGoogle Scholar
  24. 24.
    Luo, R.Z., Wang, Y.L.: Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos 22, 023109 (2012) CrossRefGoogle Scholar
  25. 25.
    Wang, H., Wang, X., Zhu, X.J., Wang, X.H.: Linear feedback controller design method for time-delay chaotic systems. Nonlinear Dyn. 70, 355–362 (2012) MATHCrossRefGoogle Scholar
  26. 26.
    Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Li, G.H., Zhou, S.P., Yang, K.: Generalized projective synchronization between two different chaotic systems using active backstepping control. Phys. Lett. A 355, 326–330 (2006) CrossRefGoogle Scholar
  28. 28.
    Njah, A.N.: Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61, 1–9 (2010) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Yu, Y.G., Li, H.X.: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Anal., Real World Appl. 12, 388–393 (2011) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Nana, B., Woafo, P., Domngang, S.: Chaotic synchronization with experimental application to secure communications. Commun. Nonlinear Sci. Numer. Simul. 14, 2266–2276 (2009) CrossRefGoogle Scholar
  31. 31.
    Smaoui, N., Karouma, A., Zribi, M.: Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16, 3279–3293 (2011) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Stefanovska, A., Haken, H., McClintock, P.V.E., Hožič, M., Bajrović, F., Ribarič, S.: Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85, 4831–4834 (2000) CrossRefGoogle Scholar
  33. 33.
    Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  34. 34.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  35. 35.
    Chen, M., Lu, J.A., Lü, J.H., Yu, S.M.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006) CrossRefGoogle Scholar
  36. 36.
    Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366, 217–222 (2007) MATHCrossRefGoogle Scholar
  37. 37.
    Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15, 3367–3376 (2005) CrossRefGoogle Scholar
  38. 38.
    Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 659–661 (2002) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceJiangxi Normal UniversityNanchangChina
  2. 2.Department of MathematicsShanghai UniversityShanghaiChina

Personalised recommendations