Nonlinear Dynamics

, Volume 76, Issue 1, pp 23–31 | Cite as

A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods

Original Paper


A control system with state feedback controllers, in which the fuzzy Lyapunov approach is developed for the stability criterion, is studied. The proposed intelligent design provides a systematic and effective framework for the control systems. The global nonlinear controller is constructed based on T–S (Takagi–Sugeno) fuzzy controller design techniques, blending all such local state feedback controllers. Based on this design, the stability conditions of a multiple time-delay system are derived in terms of the fuzzy Lyapunov theory. The effectiveness and the feasibility of the proposed controller design method are demonstrated through numerical simulations.


Lyapunov function Takagi–Sugeno form Nonlinear systems LMI 



The author would like to thank the National Science Council of the Republic of China, Taiwan, for their financial support, NSC 100-2221-E-022-013-MY2, NSC 100-2628-E-022-002-MY2.


  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965) MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985) MATHCrossRefGoogle Scholar
  3. 3.
    Chen, B.S., Tseng, C.S., Uang, H.J.: Robustness design of nonlinear dynamic systems via fuzzy linear control. IEEE Trans. Fuzzy Syst. 7, 571–585 (1999) CrossRefGoogle Scholar
  4. 4.
    Chen, B.S., Tseng, C.S., Uang, H.J.: Mixed H 2/H fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach. IEEE Trans. Fuzzy Syst. 8, 249–265 (2000) CrossRefGoogle Scholar
  5. 5.
    Chen, C.W., Chiang, W.L., Hsiao, F.H.: Stability analysis of T–S fuzzy models for nonlinear multiple time-delay interconnected systems. Math. Comput. Simul. 66, 523–537 (2004) MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, L.C., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, 231–241 (2009) MATHCrossRefGoogle Scholar
  7. 7.
    Limanond, S., Si, J.: Neural-network-based control design: an LMI approach. IEEE Trans. Neural Netw. 9, 1422–1429 (1998) CrossRefGoogle Scholar
  8. 8.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4, 14–23 (1996) CrossRefGoogle Scholar
  9. 9.
    Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45, 135–156 (1992) MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hsiao, F.H., Chen, C.W., Liang, Y.W., Xu, S.D., Chiang, W.L.: T–S fuzzy controllers for nonlinear interconnected systems with multiple time delays. IEEE Trans. Circuits Syst. I, Regul. Pap. 52, 1883–1893 (2005) CrossRefGoogle Scholar
  11. 11.
    Hsiao, F.H., Chen, C.W., Wu, Y.H., Chiang, W.L.: Fuzzy controllers for nonlinear interconnected TMD systems with external force. J. Chin. Inst. Eng. 28, 175–181 (2005) CrossRefGoogle Scholar
  12. 12.
    Li, X., de Souza, C.E.: Criteria for robust stability and stabilization of uncertain linear systems with state delay. Automatica 33, 1657–1662 (1997) CrossRefGoogle Scholar
  13. 13.
    Hsiao, F.H., Chiang, W.L., Chen, C.W., Xu, S.D., Wu, S.L.: Application and robustness design of fuzzy controller for resonant and chaotic systems with external disturbance. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 13, 281–295 (2005) MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Hsiao, F.H., Hwang, J.D., Chen, C.W., Tsai, Z.R.: Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control. IEEE Trans. Fuzzy Syst. 13, 152–163 (2005) CrossRefGoogle Scholar
  15. 15.
    Chang, C.J., Chen, C.Y., Chou, I.T.: The design of information and communication technologies: telecom MOD strength machines. J. Vib. Control (2012). doi: 10.1177/1077546312449644 Google Scholar
  16. 16.
    Chang, C.J., Chen, C.Y., Huang, C.W.: Applications for medical recovery using wireless control of a bluetooth ball with a hybrid G-sensor and human-computer interface technology. J. Vib. Control (2012). doi: 10.1177/1077546312442948 Google Scholar
  17. 17.
    Chen, C.H., Wu, W.X., Chen, C.Y.: Ant-inspired collective problem-solving systems. J. Vib. Control (2012). doi: 10.1177/1077546312456231 Google Scholar
  18. 18.
    Chen, C.H., Yao, T.K., Dai, J.H., Chen, C.Y.: A pipelined multiprocessor SOC design methodology for streaming signal processing. J. Vib. Control (2012). doi: 10.1177/1077546312458821 Google Scholar
  19. 19.
    Chen, C.H., Yao, T.K., Kuo, C.M., Chen, C.Y.: Evolutionary design of constructive multilayer feedforward neural network. J. Vib. Control (2012). doi: 10.1177/1077546312456726 Google Scholar
  20. 20.
    Chen, C.W.: Fuzzy Lyapunov method for stability conditions of nonlinear systems. Int. J. Artif. Intell. Tools 15, 163–171 (2006) CrossRefGoogle Scholar
  21. 21.
    Chen, C.W.: Stability conditions of fuzzy systems and its application to structural and mechanical systems. Adv. Eng. Softw. 37, 624–629 (2006) CrossRefGoogle Scholar
  22. 22.
    Chen, C.W.: Modeling, H control and stability analysis for structural systems using Takagi–Sugeno fuzzy model. J. Vib. Control 13, 1519–1534 (2007) MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Chen, C.W.: A novel delay-dependent criteria for time-delay T–S fuzzy systems using fuzzy Lyapunov method. Int. J. Artif. Intell. Tools 16, 545–552 (2007) CrossRefGoogle Scholar
  24. 24.
    Chen, C.W.: Adaptive fuzzy sliding mode control for seismically excited bridges with lead rubber bearing isolation. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17, 705–727 (2009) MATHCrossRefGoogle Scholar
  25. 25.
    Chen, C.W.: The stability of an oceanic structure with T–S fuzzy models. Math. Comput. Simul. 80, 402–426 (2009) MATHCrossRefGoogle Scholar
  26. 26.
    Chen, C.W.: GA-based adaptive neural network controllers for nonlinear systems. Int. J. Innov. Comput. Inf. Control 6, 1793–1803 (2010) Google Scholar
  27. 27.
    Chen, C.W.: Stability analysis of an oceanic structure using the Lyapunov method. Eng. Comput. 27, 186–204 (2010) CrossRefMATHGoogle Scholar
  28. 28.
    Chen, C.W.: Modeling and fuzzy PDC control and its application to an oscillatory TLP structure. Math. Probl. Eng. 2010, 120403 (2010). doi: 10.1155/2010/120403 Google Scholar
  29. 29.
    Chen, C.W.: Application of fuzzy-model-based control to nonlinear structural systems with time delay: an LMI method. J. Vib. Control 16, 1651–1672 (2010) MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Chen, C.W.: Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach. J. Vib. Control 17(8), 1241–1252 (2011) MATHCrossRefGoogle Scholar
  31. 31.
    Chen, C.W.: Stability analysis and robustness design of nonlinear systems: an NN-based approach. Appl. Soft Comput. 11(2), 2735–2742 (2011) CrossRefGoogle Scholar
  32. 32.
    Chen, C.W.: Modeling, control and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method. Neural Comput. Appl. 20(4), 527–534 (2011) CrossRefGoogle Scholar
  33. 33.
    Chen, C.W.: Modified intelligent genetic algorithm-based adaptive neural network control for uncertain structural systems. J. Vib. Control (2012). doi: 10.1177/1077546312442232 Google Scholar
  34. 34.
    Chen, C.W.: Neural network-based fuzzy logic parallel distributed compensation controller for structural system. J. Vib. Control (2012). doi: 10.1177/1077546312442233 Google Scholar
  35. 35.
    Chen, C.W.: Delay independent criterion for multiple time-delay systems and its application in building structure control systems. J. Vib. Control (2012). doi: 10.1177/1077546311429341 Google Scholar
  36. 36.
    Chen, C.W.: Applications of linear differential inclusion-based criterion to a nonlinear chaotic system: a critical review. J. Vib. Control 18(12), 1886–1899 (2012) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Chen, C.W.: Applications of the fuzzy Lyapunov linear matrix inequality criterion to a chaotic structural system. J. Vib. Control 18(13), 1925–1938 (2012) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Chen, C.W.: Applications of the fuzzy-neural Lyapunov criterion to multiple time-delay systems. J. Vib. Control (2012). doi: 10.1177/1077546312451034 Google Scholar
  39. 39.
    Chen, C.W.: A review of intelligent algorithm approaches and neural-fuzzy stability criteria for time-delay tension leg platform systems. J. Vib. Control (2012). doi: 10.1177/1077546312463759 Google Scholar
  40. 40.
    Chen, C.W.: Applications of neural-network-based fuzzy logic control to a nonlinear time-delay chaotic system. J. Vib. Control (2012). doi: 10.1177/1077546312461370 Google Scholar
  41. 41.
    Chen, C.W.: Fuzzy control of interconnected structural systems using the fuzzy Lyapunov method. J. Vib. Control 17(11), 1693–1702 (2011) MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Chen, C.W., Yeh, K., Liu, K.F.R., Lin, M.L.: Applications of fuzzy control to nonlinear time-delay systems using the linear matrix inequality fuzzy Lyapunov method. J. Vib. Control 18(10), 1561–1574 (2012) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Chen, C.W., Yeh, K., Yang, H.C., Liu, F.R., Liu, C.C.: A critical review of structural system control by the large-scaled neural network linear-deferential-inclusion-based criterion. J. Vib. Control (2012). doi: 10.1177/1077546312443377 Google Scholar
  44. 44.
    Chen, C.Y.: Fuzzy control for an oceanic structure: a case study in time-delay TLP system. J. Vib. Control 16, 147–160 (2010) MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Chen, P.C., Chen, C.W., Chiang, W.L.: GA-based fuzzy sliding mode controller for nonlinear systems. Math. Probl. Eng. 2008, 325859 (2008). doi: 10.1155/2008/325859 MathSciNetGoogle Scholar
  46. 46.
    Chen, P.C., Chen, C.W., Chiang, W.L., Yeh, K.: A novel stability condition and its application to GA-based fuzzy control for nonlinear systems with uncertainty. J. Mar. Sci. Technol. 17, 293–299 (2009) Google Scholar
  47. 47.
    Chen, P.C., Chen, C.W., Chiang, W.L.: Linear matrix inequality conditions of nonlinear systems by genetic algorithm-based H∞ adaptive fuzzy sliding mode controller. J. Vib. Control 17(2), 163–173 (2011) MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Chen, P.C., Chen, C.W., Chiang, W.L., Lo, D.C.: GA-based decoupled adaptive FSMC for nonlinear systems by a singular perturbation scheme. Neural Comput. Appl. 20(4), 517–526 (2011) CrossRefGoogle Scholar
  49. 49.
    Chen, B.S., Tseng, C.S., Uang, H.J.: Robustness design of nonlinear dynamic systems via fuzzy linear control. IEEE Trans. Fuzzy Syst. 7, 571–585 (1999) CrossRefGoogle Scholar
  50. 50.
    Chiou, D.J.: Applications of Hilbert–Huang transform to structural damage detection. Struct. Eng. Mech. 39(1), 1–20 (2011) CrossRefGoogle Scholar
  51. 51.
    Lin, M.L.: Stability analysis of community and ecosystem hierarchies using the Lyapunov method. J. Vib. Control 17(13), 1930–1937 (2011) MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Lin, M.L.: Fuzzy neural modeling for n-degree ecosystems using the linear matrix inequality approach. J. Vib. Control (2012). doi: 10.1177/1077546312458533 Google Scholar
  53. 53.
    Lin, M.L.: Stability conditions for ecosystem modeling using the fuzzy Lyapunov method. J. Vib. Control (2012). doi: 10.1177/1077546312451301 Google Scholar
  54. 54.
    Yeh, K., Chen, C.W.: Stability analysis of interconnected fuzzy systems using the fuzzy Lyapunov method. Math. Probl. Eng. 2010, 734340 (2010). doi: 10.1155/2010/734340 CrossRefGoogle Scholar
  55. 55.
    Yeh, K., Chen, C.W., Lo, D.C., Liu, K.F.R.: Neural-network fuzzy control for chaotic tuned mass damper systems with time delays. J. Vib. Control 18, 785–795 (2012) CrossRefGoogle Scholar
  56. 56.
    Yeh, K., Chen, C.Y., Chen, C.W.: Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method. Appl. Math. Comput. 205, 568–577 (2008) MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Chen, C.W.: Delay independent criterion for multiple time-delay systems and its application in building structure control systems. J. Vib. Control 19(3), 395–414 (2013) MathSciNetCrossRefGoogle Scholar
  58. 58.
    Lin, M.L.: Stability analysis of fuzzy-based NN modeling for ecosystems using fuzzy Lyapunov methods. J. Vib. Control (2013). doi: 10.1177/1077546312466687 Google Scholar
  59. 59.
    Liu, Y.-J., Li, Y.-X.: Adaptive fuzzy output-feedback control of uncertain SISO nonlinear systems. Nonlinear Dyn. 61, 749–761 (2010) MATHCrossRefGoogle Scholar
  60. 60.
    Hu, Q.: Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dyn. 52, 227–248 (2008) MATHCrossRefGoogle Scholar
  61. 61.
    Ibañez, C.A., Frias, O.G., Castañón, M.S.: Lyapunov-based controller for the inverted pendulum cart system. Nonlinear Dyn. 40, 367–374 (2005) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Maritime Information and TechnologyNational Kaohsiung Marine UniversityKaohsiungTaiwan, ROC
  2. 2.Global Earth Observation and Data Analysis CenterNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations