Skip to main content

Advertisement

Log in

Coevolution dynamics model of road surface and urban traffic structure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new dynamics model based on the logistic equation is proposed to capture the dynamic characteristics in the coevolution process between road surface and urban traffic structure. The stability analysis shows that ignoring the coevolution relation will lead to the disequilibrium development and cause the chaotic state of the urban transportation system eventually. To avoid the unsteadily development, a chaos control method is established. Results indicate that the suggested control model is effective in the coevolution management and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leccese, M., McCormick, K.: Congress for the New Urbanism: Charter of the New Urbanism. McGraw Hill, New York (2000)

    Google Scholar 

  2. ITE Smart Growth Task Force: Smart Growth Transportation Guidelines: An ITE Proposed Recommended Practice. Institution of Transportation Engineers, Washington (2003)

    Google Scholar 

  3. Kulash, W., Anglin, J., Marks, D.: Traditional neighborhood development: will the traffic work. In: Proceedings of 11th Annual Pedestrian Conference, Bellevue, US (1990)

    Google Scholar 

  4. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach. Environ. Plan. B, Plan. Des. 33(5), 705–725 (2006)

    Article  Google Scholar 

  5. Reilly, M., John, L.: The influence of built form and land use on mode choice. Working Paper, University of California Transportation Center, Berkeley, California (2003)

  6. Chapman, J., Lawrence, F.: SMARTRAQ: integrating travel behavior and urban form data to address transportation and air quality problems in Atlanta. Working Paper, Regional Transportation Authority and Department of Transportation, Atlanta, Georgia (2004)

  7. Lawrence, F.: LUTAQH: a study of land use, transportation, air quality and health in King County, WA. Working Paper, Regional Research Institute, King County, WA (2005)

  8. Xu, X.C.: Research on the determination of the structure of urban transportation. Urban Plann. 1, 13–16 (2003)

    Google Scholar 

  9. Bhat, M., Lam, W.H.K.: Maximum car ownership under constraints of road capacity and parking space. Transp. Res., Part A, Policy Pract. 34, 145–170 (2000)

    Article  Google Scholar 

  10. Ge, L., Wang, W., Deng, W., Wang, X.: Forecasting model of urban passenger traffic share by mode based on the sustainable development. J. Highw. Transp. Res. Dev. 21(8), 95–98 (2004)

    Google Scholar 

  11. Khasnabis, S.: Land use and transit integration and transit use incentives. J. Transp. Res. Board 1618, 39–47 (1998)

    Article  Google Scholar 

  12. Miller, E.J., Ibrahim, A.: Urban form and vehicular travel: some empirical findings. Energy Stud. Rev. 9(2), 3–21 (1999)

    Google Scholar 

  13. Camagni, R., Gibelli, M.C., Rigamonti, P.: Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion. Ecol. Econ. 40(2), 199–216 (2002)

    Article  Google Scholar 

  14. Limtanakool, N., Dijst, M., Schwanen, T.: The influence of socio-economic characteristics, land use and travel time considerations on mode choice for longer-distance trips. J. Transp. Geogr. 14(5), 327–341 (2006)

    Article  Google Scholar 

  15. Palma, A., Rochat, D.: Mode choices for trips to work in Geneva: an empirical analysis. J. Transp. Geogr. 8(1), 43–51 (2000)

    Article  Google Scholar 

  16. Mahmassani, H.S., Huynh, N.N., Srinivasan, K., Kraan, M.: Tripmaker choice behavior for shopping trips under real-time information: model formulation and results of stated-preference Internet-based interactive experiments. J. Retail. Consum. Serv. 10(6), 311–321 (2003)

    Article  Google Scholar 

  17. Bhat, C.R.: Work travel mode choice and number of non-work commute stops. Transp. Res., Part B, Methodol. 31(1), 41–54 (1997)

    Article  MathSciNet  Google Scholar 

  18. Bhat, C.R.: Analysis of travel mode and departure time choice for urban shopping trip. Transp. Res., Part B, Methodol. 32(6), 361–371 (1998)

    Article  MathSciNet  Google Scholar 

  19. DeSalvo, J.S., Huq, M.: Income, residential location and mode choice. J. Urban Econ. 40(1), 84–99 (1996)

    Article  MATH  Google Scholar 

  20. Aarts, H., Yerplanken, B., Knippenberg, A.V.: Habit and information use in travel mode choices. Acta Psychol. 96(1–2), 1–14 (1997)

    Article  Google Scholar 

  21. Srinivasan, S., Ferreira, J.: Travel behavior at the household level: understanding linkages with residential choice. Transp. Res., Part D, Transp. Environ. 7(3), 225–242 (2002)

    Article  Google Scholar 

  22. Klockner, C.A., Matthies, E.: How habits interfere with norm-directed behavior: a normative decision-making model for travel mode choice. J. Environ. Psychol. 24(3), 319–327 (2004)

    Article  Google Scholar 

  23. Lv, S., Tian, F., Li, X.F.: Study on the optimized model of urban passenger traffic structure. J. Highw. Transp. Res. Dev. 24(7), 117–120 (2003)

    Google Scholar 

  24. Lu, H.P., Wang, J.W., Zhang, P.: Urban transport structure optimization based on energy consumption. J. Tsinghua Univ. (Sci. Technol.) 44(3), 383–386 (2004)

    MathSciNet  Google Scholar 

  25. Shen, M., Lu, H.P.: A model and its application of transportation structure optimization based on urban sustainable development. Cent. South Highw. Eng. 30(1), 150–153 (2005)

    Google Scholar 

  26. Wang, Z.Q., Li, B.: The traffic target structure optimize model research under the road network capacity constraints. Traffic Transp. 2, 19–22 (2006)

    MATH  Google Scholar 

  27. Tam, M.L., Lam, W.H.K.: Maximum car ownership under constraints of road capacity and parking space. Transp. Res., Part A, Policy Pract. 34(3), 145–170 (2000)

    Article  Google Scholar 

  28. Kennedy, C.: The four pillar of sustainable urban transportation. Transp. Rev. 25(4), 393–414 (2005)

    Article  Google Scholar 

  29. Hess, S., Bierlaire, M., Polak, J.B.: Estimation of value of travel-time savings using mixed logit models. Transp. Res., Part A, Policy Pract. 39(2), 221–236 (2005)

    Article  Google Scholar 

  30. Hu, B.: Research of Sustainable Development of the Structure of Urban Passenger Transport System. Chang’an University Press, Xi’an (2006)

    Google Scholar 

  31. Levinson, D., Yerra, B.: Self organization of surface transportation networks. Transp. Sci. 40(2), 179–188 (2006)

    Article  Google Scholar 

  32. Crespo, L.G., Sun, J.Q.: Optimal control of populations of competing species. Nonlinear Dyn. 27(2), 197–210 (2012)

    Article  MathSciNet  Google Scholar 

  33. Gu, E.G., Tian, F.: Complex dynamics analysis for a duopoly model of common fishery resource. Nonlinear Dyn. 61(4), 579–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Luís, M.A.B., José, L., Dirk, H., Christian, K., Geoffrey, B.W.: Growth, innovation, scaling and the pace of life in cities. Proc. Natl. Acad. Sci. USA 104(17), 7301–7306 (2007)

    Article  Google Scholar 

  35. Ghosh, D., Chowdhury, A.R., Saha, P.: Multiple delay Rossler system bifurcation and chaos control. Chaos Solitons Fractals 35(3), 472–485 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ko, H.K., Tang, S., Wang, D.Z.W.: Managing the accessibility on mass public transit: the case of Hong Kong. J. Transp. Land Use 1(2), 23–49 (2008)

    Google Scholar 

  37. Ying, J.Q.: Continuous optimization method for integrated land use/transportation models. J. Transp. Syst. Eng. Inf. Technol. 7(3), 64–72 (2007)

    Google Scholar 

  38. Tang, T.Q., Li, C.Y., Huang, H.J.: A new car-following model with the consideration of the driver’s forecast effect. Phys. Lett. A 374(38), 3951–3956 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper is partly supported by the National Basic Research Program of China (2012CB725400), NSFC (71131001, 71271024), Program for New Century Excellent Talents in University (NCET-12-0764) and FANEDD (201170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Xu, M. & Gao, Z. Coevolution dynamics model of road surface and urban traffic structure. Nonlinear Dyn 73, 1327–1334 (2013). https://doi.org/10.1007/s11071-013-0865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0865-0

Keywords

Navigation