Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 795–800 | Cite as

Cryptanalysis of a parallel sub-image encryption method with high-dimensional chaos

  • Xingyuan Wang
  • Lintao Liu
Original Paper


Recently, a parallel sub-image encryption method with high-dimensional chaos has been proposed. But there is a fatal flaw in the cryptosystem that the generated keystream remains unchanged when encrypting every image. Based on this point, we could recover the plaintext by applying chosen plaintext attack. Therefore the proposed cryptosystem is not supposed to be used in image transmission system. Experimental results show the feasibility of our attack.


Cryptanalysis Sub-image encryption Parallel encryption High-dimensional chaos 



This research is supported by the National Natural Science Foundation of China (Nos. 61173183, 60973152, and 60573172), the Superior University Doctor Subject Special Scientific Research Foundation of China (No. 20070141014), Program for Liaoning Excellent Talents in University (No. LR2012003), the National Natural Science Foundation of Liaoning province (No. 20082165) and the Fundamental Research Funds for the Central Universities (No. DUT12JB06).


  1. 1.
    Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57, 431–439 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Liu, Y.J., Chen, C.P.L., Wen, G.X., Tong, S.C.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22, 1162–1167 (2011) CrossRefGoogle Scholar
  3. 3.
    Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 40, 170–184 (2010) CrossRefGoogle Scholar
  4. 4.
    Matthews, R.: On the derivation of a “chaotic” encryption algorithm. Cryptologia 13, 29–42 (1989) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fridrich, J.: Image encryption based on chaotic maps. In: The IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, pp. 1105–1110 (1997) Google Scholar
  6. 6.
    Wang, X.Y., Teng, L.: An image blocks encryption algorithm based on spatiotemporal chaos. Nonlinear Dyn. 67, 365–371 (2012) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006) CrossRefGoogle Scholar
  8. 8.
    Fu, C., Chen, J.J., Zou, H., Meng, W.H., Zhan, Y.F., Yu, Y.W.: A chaos-based digital image encryption scheme with an improved diffusion strategy. Opt. Express 20, 2363–2378 (2012) CrossRefGoogle Scholar
  9. 9.
    Huang, X.L.: Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dyn. 67, 2411–2417 (2012) CrossRefGoogle Scholar
  10. 10.
    Huang, C.K., Nien, H.H.: Multi chaotic systems based pixel shuffle for image encryption. Opt. Commun. 282, 2123–2127 (2009) CrossRefGoogle Scholar
  11. 11.
    Guan, Z.H., Huang, F.J., Guan, W.J.: Chaos-based encryption algorithm. Phys. Lett. A 346, 153–157 (2005) MATHCrossRefGoogle Scholar
  12. 12.
    Gao, T.G., Chen, Z.Q.: A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372, 394–400 (2008) MATHCrossRefGoogle Scholar
  13. 13.
    Xu, S.J., Chen, X.B., Zhang, R., Yang, Y.X., Guo, Y.C.: An improved chaotic cryptosystem based on circular bit shift and XOR operations. Phys. Lett. A 376, 1003–1010 (2012) MATHCrossRefGoogle Scholar
  14. 14.
    Ye, G.D., Wong, K.W.: An efficient chaotic image encryption algorithm based on a generalized Arnold map. Nonlinear Dyn. 69, 2079–2087 (2012) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mao, Y.B., Chen, G.R., Lian, S.G.: A novel fast image encryption scheme based on 3D chaotic Baker maps. Int. J. Bifurc. Chaos 14, 3613–3624 (2004) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bigdeli, N., Farid, Y., Afshar, K.: A novel image encryption/decryption scheme based on chaotic neural networks. Eng. Appl. Artif. Intell. 25, 753–765 (2012) CrossRefGoogle Scholar
  17. 17.
    Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62, 615–621 (2010) MATHCrossRefGoogle Scholar
  18. 18.
    Liu, L.L., Zhang, Q., Wei, X.P.: A RGB image encryption algorithm based on DNA encoding and chaos map. Comput. Electr. Eng. 38, 1240–1248 (2012) CrossRefGoogle Scholar
  19. 19.
    Liu, H.J., Wang, X.Y., Kadir, A.: Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 12, 1457–1466 (2012) CrossRefGoogle Scholar
  20. 20.
    Wang, X.Y., Yang, L.: A novel chaotic image encryption algorithm based on water wave motion and water drop diffusion models. Opt. Commun. 285, 4033–4042 (2012) CrossRefGoogle Scholar
  21. 21.
    Arroyo, D., Li, C.Q., Li, S.J., Alvarez, G., Halang, W.A.: Cryptanalysis of an image encryption scheme based on a new total shuffling algorithm. Chaos Solitons Fractals 41, 2613–2616 (2009) MATHCrossRefGoogle Scholar
  22. 22.
    Rhouma, R., Safya, B.: Cryptanalysis of a new encryption algorithm based on hyper-chaos. Phys. Lett. A 372, 5973–5978 (2008) MATHCrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Li, C.Q., Li, Q., Zhang, D., Shu, S.: Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 69, 1091–1096 (2012) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Cokai, C., Solak, E.: Cryptanalysis of a chaos-based image encryption algorithm. Phys. Lett. A 373, 1357–1360 (2009) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67, 557–566 (2012) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  27. 27.
    Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations