Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 775–782 | Cite as

Pinning synchronization of complex network with non-derivative and derivative coupling

  • Liping Deng
  • Zhaoyan Wu
  • Qingchu Wu
Original Paper


This paper investigates synchronization of a complex network with non-derivative and derivative coupling. For achieving the pinning synchronization, the corresponding controllers are designed and applied to only a small fraction of nodes. Both linear and adaptive feedback control methods are used to design controllers. Based on Lyapunov stability theory, several simple and useful criteria for pinning synchronization are derived. Finally, numerical simulations are given to verify the effectiveness of the derived results.


Synchronization Pinning control Non-derivative and derivative coupling 



This work is supported jointly by the Startup Fund for Ph.D. of Jiangxi Normal University (3087) and the Innovation Foundation for Graduate of Jiangxi Province.


  1. 1.
    Barrat, A., Weight, M.: On the properties of small world networks. Eur. Phys. J. B 13, 547–560 (2000) CrossRefGoogle Scholar
  2. 2.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001) CrossRefGoogle Scholar
  3. 3.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wang, J., Wu, H.: Local and global exponential output synchronization of complex delayed dynamical networks. Nonlinear Dyn. 67, 497–504 (2012) MATHCrossRefGoogle Scholar
  6. 6.
    Zhou, J., Chen, T.: Synchronization in general complex delayed dynamical networks. IEEE Trans. Circuits Syst. I, Regul. Pap. 53, 733–744 (2006) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, W., Slotine, J.J.E.: Contraction analysis of time-delayed communications and group cooperation. IEEE Trans. Autom. Control 51, 712–717 (2006) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wu, J., Jiao, L.: Synchronization in complex dynamical networks with nonsymmetric coupling. Physica D 237, 2487–2498 (2008) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Sun, W., Yang, Y., Li, C., Fang, J.: Synchronization in delayed map lattices with scale-free interactions. Int. J. Non-Linear Mech. 45, 652–658 (2010) CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Zhao, J.: Projective and lag synchronization between general complex networks via impulsive control. Nonlinear Dyn. 67, 2519–2525 (2012) MATHCrossRefGoogle Scholar
  11. 11.
    Wang, X., Chen, G.: Pinning control of scale-free dynamical networks. Physica A 310, 521–531 (2002) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I 51, 2074–2087 (2004) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I, Regul. Pap. 54, 1317–1326 (2007) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhou, J., Wu, X., Yu, W., Small, M., Lu, J.: Pinning synchronization of delayed neural networks. Chaos 18, 043111 (2008) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhao, J., Lu, J., Zhang, Q.: Pinning a complex delayed dynamical network to a homogenous trajectory. IEEE Trans. Circuits Syst. II, Express Briefs 56, 514–518 (2009) CrossRefGoogle Scholar
  16. 16.
    Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19, 013120 (2009) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009) MATHCrossRefGoogle Scholar
  18. 18.
    Xiang, L., Zhu, J.J.H.: On pinning synchronization of general coupled networks. Nonlinear Dyn. 64, 339–348 (2011) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Song, Q., Cao, J.: On pinning synchronization of directed and undirected complex dynamical networks. IEEE Trans. Circuits Syst. I, Regul. Pap. 57, 672–680 (2010) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hu, C., Yu, J., Jiang, H., Teng, Z.: Pinning synchronization of weighted complex networks with variable delays and adaptive coupling weights. Nonlinear Dyn. 67, 1373–1385 (2012) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Wen, S., Chen, S., Guo, W.: Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling. Phys. Lett. A 372, 6340–6346 (2008) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Xu, Y., Zhou, W., Fang, J., Sun, W.: Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling. Phys. Lett. A 374, 1673–1677 (2010) MATHCrossRefGoogle Scholar
  23. 23.
    Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263, 341–346 (1999) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceJiangxi Normal UniversityNanchangChina

Personalised recommendations