Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 485–498 | Cite as

Fully resonant soliton interactions in the Whitham–Broer–Kaup system based on the double Wronskian solutions

Original Paper


With the aim of exploring whether the (1+1)-dimensional coupled nonlinear evolution equations admit abundant soliton interactions, like the cases in the Kadomtsev–Petviashvili II equation, we in this paper study the double Wronskian solutions to the Whitham–Broer–Kaup (WBK) system. We give the parametric condition for two double Wronskians to generate the non-singular, non-trivial and irreducible soliton solutions. Via the asymptotic analysis of two double Wronskians, we show that the soliton solutions of the WBK system is in general linearly combined of fully resonant (M,N)- and (M−1,N+1)-soliton configurations. It turns out that the WBK system can exhibit various complex soliton structures which are different pairwise combinations of elastic, confluent and divergent interactions. From a combinatorial viewpoint, we also explain that the asymptotic solitons of a [(M,N),(M−1,N+1)]-soliton solution are identified by a pair of Grassmannian permutations.


Soliton interactions Whitham–Broer–Kaup system Asymptotic analysis Double Wronskian 



TX would like to thank the beneficial direction of Professor Gino Biondini when staying in the State University of New York at Buffalo as a visiting scholar from 2008 to 2009. This work has been supported by the Science Foundation of China University of Petroleum, Beijing (Grant No. BJ-2011-04), by the Special Funds of the National Natural Science Foundation of China (Grant No. 11247267), and by the National Natural Science Foundation of China (Grant No. 11071257).


  1. 1.
    Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970) MATHGoogle Scholar
  2. 2.
    Sato, M.: Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold. RIMS Kokyuroku 439, 30–46 (1981) Google Scholar
  3. 3.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1992) Google Scholar
  4. 4.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004) MATHCrossRefGoogle Scholar
  5. 5.
    Biondini, G., Kodama, Y.: On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A 36, 10519–10536 (2003) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Biondini, G., Chakravarty, S.: Soliton solutions of the Kadomtsev–Petviashvili II equation. J. Math. Phys. 47, 033514 (2006) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chakravarty, S., Kodama, Y.: Classification of the soliton solutions of KPII. J. Phys. A 41, 275209 (2008) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Biondini, G.: Line soliton interactions of the Kadomtsev–Petviashvili equation. Phys. Rev. Lett. 99, 064103 (2007) CrossRefGoogle Scholar
  9. 9.
    Chakravarty, S., Kodama, Y.: Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math. 123, 83–151 (2009) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kodama, Y.: KP solitons in shallow water. J. Phys. A 43, 434004 (2010) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kodama, Y., Williams, L.: KP solitons and total positivity for the Grassmannian (2011). arXiv:1106.0023v1
  12. 12.
    Kodama, Y., Williams, L.: KP solitons, total positivity, and cluster algebras. Proc. Natl. Acad. Sci. USA 108, 8984–8989 (2011) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Freeman, N.C., Nimmo, J.J.C.: Soliton-solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974) MATHGoogle Scholar
  15. 15.
    Ying, J.P.: Fission and fusion of solitons for the (1+1)-dimensional Kupershmidt equation. Commun. Theor. Phys. 35, 405–408 (2001) MATHGoogle Scholar
  16. 16.
    Satsuma, J., Kajiwara, K., Matsukidaira, J., Hietarinta, J.: Solutions of the Broer–Kaup system through its trilinear form. J. Phys. Soc. Jpn. 61, 3096–3102 (1992) CrossRefGoogle Scholar
  17. 17.
    Li, Y.S., Ma, W.X., Zhang, J.E.: Darboux transformations of classical Boussinesq system and its new solutions. Phys. Lett. A 275, 60–66 (2000) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Li, Y.S., Zhang, J.E.: Darboux transformations of classical Boussinesq system and its multi-soliton solutions. Phys. Lett. A 284, 253–258 (2001) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lin, J., Xu, Y.S., Wu, F.M.: Evolution property of soliton solutions for the Whitham–Broer–Kaup equation and variant Boussinesq equation. Chin. Phys. 12, 1049–1053 (2003) CrossRefGoogle Scholar
  20. 20.
    Wang, L., Gao, Y.T., Gai, X.L., Sun, Z.Y.: Inelastic interactions and double Wronskian solutions for the Whitham–Broer–Kaup model in shallow water. Phys. Scr. 80, 065017 (2009) CrossRefGoogle Scholar
  21. 21.
    Lin, G.D., Gao, Y.T., Gai, X.L., Meng, D.X.: Extended double Wronskian solutions to the Whitham–Broer–Kaup equations in shallow water. Nonlinear Dyn. 64, 197–206 (2011) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin, G.D., Gao, Y.T., Wang, L., Meng, D.X., Yu, X.: Elastic-inelastic-interaction coexistence and double Wronskian solutions for the Whitham–Broer–Kaup shallow-water-wave model. Commun. Nonlinear Sci. Numer. Simul. 16, 3090–3096 (2011) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Li, H.Z., Tian, B., Li, L.L., Zhang, H.Q., Xu, T.: Darboux transformation and new solutions for the Whitham–Broer–Kaup equations. Phys. Scr. 78, 065001 (2008) CrossRefGoogle Scholar
  24. 24.
    Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. A 299, 6–25 (1967) MATHCrossRefGoogle Scholar
  25. 25.
    Broer, L.J.: Approximate equations for long water waves. Appl. Sci. Res. 31, 377–395 (1975) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kaup, D.J.: A higher-order water-wave equation and the method for solving it. Prog. Theor. Phys. 54, 396–408 (1975) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Kupershmidt, B.A.: Mathematics of dispersive water waves. Commun. Math. Phys. 99, 51–73 (1985) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, C., Tian, B., Meng, X.H., Lü, X., Cai, K.J., Geng, T.: Painlevé integrability and N-soliton solution for the Whitham–Broer–Kaup shallow water model using symbolic computation. Z. Naturforsch. 63a, 253–260 (2008) Google Scholar
  29. 29.
    Xie, F.D., Yan, Z.Y., Zhang, H.Q.: Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations. Phys. Lett. A 285, 76–80 (2001) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Chen, Y., Wang, Q.: Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham–Broer–Kaup equation. Phys. Lett. A 347, 215–227 (2005) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Yan, Z.Y., Zhang, H.Q.: New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water. Phys. Lett. A 285, 355–362 (2001) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Xu, T., Li, J., Zhang, H.Q., Zhang, Y.X., Yao, Z.Z., Tian, B.: New extension of the tanh-function method and application to the Whitham–Broer–Kaup shallow water model with symbolic computation. Phys. Lett. A 369, 458–463 (2007) CrossRefGoogle Scholar
  33. 33.
    Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Freeman, N.C.: Soliton solutions of nonlinear evolution equations. IMA J. Appl. Math. 32, 125–145 (1984) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Ma, W.X., Li, C.X., He, J.S.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal. 70, 4245–4258 (2009) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Ma, W.X.: An application of the Casoratian technique to the 2D Toda lattice equation. Mod. Phys. Lett. B 22, 1815–1825 (2008) MATHCrossRefGoogle Scholar
  37. 37.
    Chen, D.Y., Zhang, D.J., Bi, J.B.: New double Wronskian solutions of the AKNS equation. Sci. China Ser. A 51, 55–69 (2008) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ma, W.X.: Complexiton solutions to the Korteweg–de Vries equation. Phys. Lett. A 301, 35–44 (2002) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974) MathSciNetGoogle Scholar
  41. 41.
    Postnikov, A.: Total positivity, Grassmannians, and networks. Preprint (2006). arXiv:math.CO/0609764
  42. 42.
    Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2, 140–144 (2011) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of ScienceChina University of PetroleumBeijingChina

Personalised recommendations