Advertisement

Nonlinear Dynamics

, Volume 72, Issue 1–2, pp 91–99 | Cite as

On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian systems

  • Liangcheng Cai
  • Yong He
  • Min Wu
Original Paper

Abstract

This paper investigates the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian (PH) systems. Once the desired Hamiltonian function is chosen, if the desired damping matrix is large enough, the convergence speed of the control law asymptotically stabilizing the PH system works more quickly. On the other hand, the desired Hamiltonian function can be replaced by a new desired energy function, which is also effective in energy-shaping. Finally, a three-phase synchronous generator example is given to show the correctness of the above contents.

Keywords

Port–Hamiltonian systems Desired damping matrix Matching equations Convergence speed 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61125301 and 61210011.

References

  1. 1.
    Van Der Schaft, A.J.: L 2-Gain and Passivity Techniques in the Nonlinear Control, 2nd edn., p. 102. Springer, London (2000) CrossRefGoogle Scholar
  2. 2.
    Ortega, R., Jeltsema, D., Scherpen, J.M.A.: Power shaping: a new paradigm for stabilization of nonlinear RLC circiuts. IEEE Trans. Autom. Control 48(10), 1762–1767 (2003) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Garcia-Canseco, E., Jeltsema, D., Ortega, R., Scherpen, J.M.A.: Power-based control of physical systems. Automatica 46(1), 127–132 (2010) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Xi, Z., Cheng, D.: Passivity-based stabilization and H control of the Hamiltonian control systems with dissipation and its applications to power systems. Int. J. Control 73(18), 1686–1691 (2000) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Donaire, A., Junco, S.: On the addition of integral action to Port-controlled Hamiltonian systems. Automatica 45(8), 1910–1916 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Astolfi, A., Ortega, R., Venkatraman, A.: A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holomic constraints. Automatica 46(1), 182–189 (2010) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Venkatraman, A., Ortega, R., Sarras, I., Van Der Schaft, A.J.: Speed observation and position feedback stabilization of partially linearizable mechanical systems. IEEE Trans. Autom. Control 55(5), 1059–1074 (2010) CrossRefGoogle Scholar
  8. 8.
    Ortega, R., Van Der Schaft, A.J., Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of Port-controlled Hamiltonian systems. Automatica 38(4), 585–596 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ortega, R., Garcia-Canseco, E.: Interconnection and damping assignment passivity-based control: a survey. Eur. J. Control 10(2), 432–450 (2004) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jeltsema, D., Ortega, R., Scherpen, J.M.A.: An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems. Automatica 40(9), 1643–1646 (2004) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ortega, R., Spong, M.W., Gomez-estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ortega, R., Van Der Schaft, A.J., Castanos, F., Astolfi, A.: Control by interconnection and standard passivity-based control of Port–Hamiltonian systems. IEEE Trans. Autom. Control 53(11), 2527–2542 (2008) CrossRefGoogle Scholar
  13. 13.
    Castanos, F., Ortega, R.: Energy-balancing passivity-based control is equivalent to dissipation and output invariance. Syst. Control Lett. 58(8), 533–560 (2009) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ramire, H., Sbarbaro, D., Ortega, R.: On the control of non-linear processes: an IDA-PBC approach. J. Process Control 19(2), 405–414 (2009) CrossRefGoogle Scholar
  15. 15.
    Macchelli, A.: Energy shaping of distributed parameter Port–Hamiltonian systems based on finite element approximation. Syst. Control Lett. 60(8), 579–589 (2011) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Polyuga, R.V., Van Der Schaft, A.J.: Structure preserving model reduction of Port–Hamiltonian systems by moment matching at infinity. Automatica 46(4), 665–672 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Ortega, R., Romero, J.: Robust integral control of Port–Hamiltonian systems: the case of non-passive output with unmatched disturbances. Syst. Control Lett. 61(1), 11–17 (2012) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Polyuga, R.V., Van Der Schaft, A.J.: Effort- and flow-constraint reduction methods for structure preserving model reduction of Port–Hamiltonian systems. Syst. Control Lett. 61(3), 412–421 (2012) MATHCrossRefGoogle Scholar
  19. 19.
    Fujimoto, K., Sugie, T.: Canonical transformation and stabilization of generalized Hamiltonian systems. Syst. Control Lett. 42(3), 217–227 (2001) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Hunan Engineering Laboratory for Advanced Control and Intelligent AutomationChangshaChina

Personalised recommendations