Skip to main content
Log in

Nonlinear vibrations of axially moving multi-supported strings having non-ideal support conditions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, nonlinear vibrations of an axially moving multi-supported string have been investigated. The main difference of this study from the others is in that there are non-ideal supports allowing minimal deflections between ideal supports at both ends of the string. Nonlinear equations of the motion and boundary conditions have been obtained using Hamilton’s Principle. Dependence of the equations of motion and boundary conditions on geometry and material of the string have been eliminated by non-dimensionalizing. Method of multiple scales, a perturbation technique, has been employed for solving the equations of motion. Axial velocity has been assumed a harmonically varying function about a constant value. Axially moving string has been investigated in three regions. Vibrations have been examined for three different cases of the velocity variation frequency. Stability has been analyzed and stability boundaries have been established for the principal parametric resonance case. Effects of the non-ideal support conditions on stability boundaries and vibration amplitudes have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Aiken, J.: An account of some experiments on rigidity produced by centrifugal force. Philos. Mag. 5(29), 81–105 (1878)

    Google Scholar 

  2. Skutch, R.: Uber die Bewegung eines gespannten Fadens, welcher gezwungun ist, durch zwei feste Punkte mit einer constanten Geschwindigkeit zu gehen, und zwischen denselben in transversalschwingungen von gerlinger Amplitude versetztwird. Ann. Phys. Chem. 61, 190–195 (1987)

    Google Scholar 

  3. Miranker, W.L.: The wave equation in a medium in motion. IBM J. Res. Dev. 4, 36–42 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mote, C.D. Jr.: A study of band saw vibration. J. Franklin Inst. 279(6), 430–444 (1965)

    Article  Google Scholar 

  5. Mote, C.D. Jr.: On the nonlinear oscillation of an axially moving string. J. Appl. Mech. 33, 463–464 (1966)

    Article  Google Scholar 

  6. Mote, C.D. Jr.: Parametric excitation of an axially moving string. J. Appl. Mech. 35(1), 171–172 (1968)

    Article  Google Scholar 

  7. Mote, C.D. Jr.: Dynamic stability of axially moving materials. Shock Vib. Dig. 4(4), 2–11 (1972)

    Article  Google Scholar 

  8. Wickert, J.A., Mote, C.D. Jr.: Current research on the vibration and stability of axially-moving materials. Shock Vib. Dig. 20(5), 3–13 (1988)

    Article  Google Scholar 

  9. Wickert, J.A., Mote, C.D. Jr.: Response and discretization method for axially moving materials. Appl. Mech. Rev. 44(11), S279–S284 (1991)

    Article  Google Scholar 

  10. Mote, C.D. Jr.: Stability of systems transporting accelerating axially moving materials. J. Dyn. Syst. Meas. Control 97, 96–98 (1975)

    Article  Google Scholar 

  11. Ulsoy, A.G., Mote, C.D., Syzmani, R.: Principal developments in band saw vibration and stability research. Eur. J. Wood Prod. 36, 273–280 (1978)

    Article  Google Scholar 

  12. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  13. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  14. Nayfeh, A.H., Nayfeh, J.F., Mook, D.T.: On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 3(1), 145–162 (1992)

    Article  Google Scholar 

  15. Pakdemirli, M.: A comparison of two perturbation methods for vibrations of systems with quadratic and cubic nonlinearities. Mech. Res. Commun. 21, 203–208 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pakdemirli, M., Boyaci, H.: Comparison of direct-perturbation methods with discretization-perturbation methods for nonlinear vibrations. J. Sound Vib. 186(5), 837–845 (1995)

    Article  MATH  Google Scholar 

  17. Pakdemirli, M., Nayfeh, S.A., Nayfeh, A.H.: Analysis of one-to-one autoparametric resonances in cables: discretization vs. direct treatment. Nonlinear Dyn. 8(1), 65–83 (1995)

    Article  MathSciNet  Google Scholar 

  18. Nayfeh, A.H., Nayfeh, S.A., Pakdemirli, M.: On the discretization of weakly nonlinear spatially continuous systems. In: Namachchivaya, N.S., Kliemann, W. (eds.) Nonlinear Dynamic Stochastic Mechanism. CRC Press, Boca Raton (1995)

    Google Scholar 

  19. Chen, L.Q., Zhao, W.J.: The energetics and stability of axially moving Kirchhoff strings. J. Acoust. Soc. Am. 117(5), 55–58 (2005)

    Article  Google Scholar 

  20. Pakdemirli, M., Ulsoy, A.G., Ceranoglu, A.: Transverse vibration of an axially accelerating string. J. Sound Vib. 169, 179–196 (1994)

    Article  MATH  Google Scholar 

  21. Pakdemirli, M., Ulsoy, A.G.: Stability analysis of an axially accelerating beam. J. Sound Vib. 203, 815–832 (1997)

    Article  Google Scholar 

  22. Pellicano, F., Mastroddi, F.: Nonlinear dynamics of a beam on elastic foundation. Nonlinear Dyn. 14, 335–355 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oz, H.R., Pakdemirli, M., Ozkaya, E.: Transition behavior from string to beam an axially accelerating material. J. Sound Vib. 215(3), 571–576 (1998)

    Article  Google Scholar 

  24. Shahruz, S.M.: Boundary control of the axially moving Kirchhoff string. Automatica 34(10), 1273–1277 (1998)

    Article  MATH  Google Scholar 

  25. Shahruz, S.M.: Boundary control of a nonlinear axially moving string. Int. J. Robust Nonlinear Control 10(1), 7–25 (2000)

    Article  MathSciNet  Google Scholar 

  26. Ozkaya, E., Pakdemirli, M.: Lie group theory and analytical solutions for the axially accelerating string problem. J. Sound Vib. 230(4), 729–742 (2000)

    Article  MathSciNet  Google Scholar 

  27. Chen, L.Q., Zhang, N.H., Zu, J.W.: Bifurcation and chaos of an axially moving viscoelastic string. Mech. Res. Commun. 29(2/3), 81–90 (2002)

    Article  MATH  Google Scholar 

  28. Chen, L.Q., Zu, J.W.: Parametric resonance of axially moving string with an integral constitutive law. Int. J. Nonlinear Sci. Numer. Simul. 4(2), 169–177 (2003)

    Article  Google Scholar 

  29. Chen, L.Q., Zu, J.W., Wu, J.: Dynamic response of the parametrically excited axially moving string constituted by the Boltzmann superposition principle. Acta Mech. 162, 143–155 (2003)

    Article  MATH  Google Scholar 

  30. Wu, J., Chen, L.Q.: Steady-state responses and their stability of nonlinear vibration of an axially accelerating string. Appl. Math. Mech. 25(9), 1001–1011 (2004)

    Article  MATH  Google Scholar 

  31. Chen, L.Q., Zhao, W.J.: A numerical method for simulating transverse vibrations of axially moving strings. Appl. Math. Comput. 160(2), 411–422 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, L.Q., Zhao, W.J., Zu, J.W.: Simulations of transverse vibrations of an axially moving string: a modified difference approach. Appl. Math. Comput. 166, 596–607 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. 58, 91–116 (2005)

    Article  Google Scholar 

  34. Van Horssen, W.T., Ponomareva, S.V.: On the construction of the solution of an equation describing an axially moving string. J. Sound Vib. 287, 359–366 (2005)

    Article  MATH  Google Scholar 

  35. Ghayesh, M.H.: Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide. J. Sound Vib. 314, 757–774 (2008)

    Article  Google Scholar 

  36. Chen, L., Zhao, W., Ding, H.: On Galerkin discretization of axially moving nonlinear strings. Acta Mech. Solida Sin. 22(4), 369–376 (2009)

    MathSciNet  Google Scholar 

  37. Chen, L.Q., Zhang, W., Zu, J.W.: Nonlinear dynamics for transverse motion of axially moving strings. Chaos Solitons Fractals 40, 78–90 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ghayesh, M.H.: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. Int. J. Non-Linear Mech. 45, 382–394 (2010)

    Article  Google Scholar 

  39. Nguyen, Q.C., Hong, K.S.: Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J. Sound Vib. 329, 4588–4603 (2010)

    Article  Google Scholar 

  40. Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. 69, 193–210 (2011)

    Article  MathSciNet  Google Scholar 

  41. Zhang, G.C., Ding, H., Chen, L.Q., Yang, S.P.: Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speeds. J. Sound Vib. 331, 1612–1623 (2012)

    Article  Google Scholar 

  42. Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0458-3

    Google Scholar 

  43. Pakdemirli, M., Boyaci, H.: Vibrations of a stretched beam with non-ideal boundary conditions. Math. Comput. Appl. 6, 217–220 (2001)

    MATH  Google Scholar 

  44. Pakdemirli, M., Boyaci, H.: Effect of non-ideal boundary conditions on the vibrations of continuous systems. J. Sound Vib. 249(4), 815–823 (2002)

    Article  MathSciNet  Google Scholar 

  45. Pakdemirli, M., Boyaci, H.: Nonlinear vibrations of a simple-simple beam with a non-ideal support in between. J. Sound Vib. 268, 331–341 (2003)

    Article  MATH  Google Scholar 

  46. Boyacı, H.: Vibrations of stretched damped beams under non-ideal boundary conditions. Sadhana 31(1), 1–8 (2006)

    Article  MATH  Google Scholar 

  47. Yurddaş, A., Özkaya, E., Boyacı, H.: Nonlinear vibrations and stability analysis of axially moving strings having nonideal mid-support conditions. J. Vib. Control (2012). doi:10.1177/1077546312463760

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the TUBITAK (Scientific and Technological Research Council of Turkey) under the Project number 107M302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yurddaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurddaş, A., Özkaya, E. & Boyacı, H. Nonlinear vibrations of axially moving multi-supported strings having non-ideal support conditions. Nonlinear Dyn 73, 1223–1244 (2013). https://doi.org/10.1007/s11071-012-0650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0650-5

Keywords

Navigation