Nonlinear Dynamics

, Volume 71, Issue 1–2, pp 159–173 | Cite as

An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system

  • Abdessattar Abdelkefi
  • Rui Vasconcellos
  • Ali H. Nayfeh
  • Muhammad R. Hajj
Original Paper


We perform an analytical and experimental investigation into the dynamics of an aeroelastic system consisting of a plunging and pitching rigid airfoil supported by a linear spring in the plunge degree of freedom and a nonlinear spring in the pitch degree of freedom. The experimental results show that the onset of flutter takes place at a speed smaller than the one predicted by a quasi-steady aerodynamic approximation. On the other hand, the unsteady representation of the aerodynamic loads accurately predicts the experimental value. The linear analysis details the difference in both formulation and provides an explanation for this difference. Nonlinear analysis is then performed to identify the nonlinear coefficients of the pitch spring. The normal form of the Hopf bifurcation is then derived to characterize the type of instability. It is demonstrated that the instability of the considered aeroelastic system is supercritical as observed in the experiments.


Experimental identification Aeroelasticity Normal form Hopf bifurcation 


  1. 1.
    Dowell, E.H., Tang, D.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40, 1697–1707 (2002) CrossRefGoogle Scholar
  2. 2.
    Gilliat, H.C., Strganac, T.W., Kurdila, A.J.: An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 31, 1–22 (2003) CrossRefGoogle Scholar
  3. 3.
    Raghothama, A., Narayanan, S.: Non-linear dynamics of a two-dimensional air foil by incremental harmonic balance method. J. Sound Vib. 226, 493–517 (1999) CrossRefGoogle Scholar
  4. 4.
    Liu, L., Wong, Y.S., Lee, B.H.K.: Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 234, 641–659 (2000) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Abdelkefi, A., Vasconcellos, R., Marques, F., Hajj, M.R.: Bifurcation analysis of an aeroelastic system with concentrated nonlinearities. Nonlinear Dyn. 69, 57–70 (2012) CrossRefGoogle Scholar
  6. 6.
    Abdelkefi, A., Vasconcellos, R., Marques, F., Hajj, M.R.: Modeling and identification of freeplay nonlinearity. J. Sound Vib. 331, 1898–1907 (2012) CrossRefGoogle Scholar
  7. 7.
    Vasconcellos, R., Abdelkefi, A., Marques, F., Hajj, M.R.: Representation and analysis of control surface freeplay nonlinearity. J. Fluids Struct. 31, 79–91 (2012) CrossRefGoogle Scholar
  8. 8.
    Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010) CrossRefGoogle Scholar
  9. 9.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2012) CrossRefGoogle Scholar
  10. 10.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012) CrossRefGoogle Scholar
  11. 11.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68, 531–541 (2012) CrossRefGoogle Scholar
  12. 12.
    Souza, V.C., Anicezio, M., De Marqui, C., Erturk, A.: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. J. Smart Mater. Struct. 20, 094007 (2011) CrossRefGoogle Scholar
  13. 13.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Sensitivity analysis of piezoaeroelastic energy harvesters. J. Intell. Mater. Syst. Struct. (2012). doi: 10.1177/1045389X12440752 Google Scholar
  14. 14.
    Strganac, T.W., Ko, J., Thompson, D.E., Kurdila, A.J.: Identification and control of limit cycle oscillations in aeroelastic systems. In: Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit (1999). AIAA Paper No. 99-1463 Google Scholar
  15. 15.
    Ko, J., Strganac, T.W., Kurdila, A.J.: Adaptive feedback linearization for the control of a typical wing section with structural nonlinearity. Nonlinear Dyn. 18, 289–301 (1999) MATHCrossRefGoogle Scholar
  16. 16.
    Gilliatt, H.C., Straganac, T.W., Kurdilla, A.J.: An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 31, 1–22 (2003) MATHCrossRefGoogle Scholar
  17. 17.
    Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover, New York (1993) Google Scholar
  18. 18.
    Dowell, E.H.: A Modern Course in Aeroelasticity. Kluwer, Dordrecht (1995) MATHGoogle Scholar
  19. 19.
    Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. Technical Report NACA 496 (1935) Google Scholar
  20. 20.
    Bisplinghoff, R.L., Ashley, H.A., Halfman, R.L.: Aeroelasticity. Dover, New York (1996) Google Scholar
  21. 21.
    Edwards, J.W., Ashley, A.H., Breakwell, J.V.: Unsteady aerodynamic modeling for arbitrary motions. AIAA J. 17, 365–374 (1979) MATHCrossRefGoogle Scholar
  22. 22.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973) MATHGoogle Scholar
  23. 23.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley-Interscience, New York (1981) MATHGoogle Scholar
  24. 24.
    Nayfeh, A.H., Balachandran, B.: In: Applied nonlinear dynamics. Wiley Series in Nonlinear Science. Wiley, New York (1994) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Abdessattar Abdelkefi
    • 1
  • Rui Vasconcellos
    • 2
  • Ali H. Nayfeh
    • 1
  • Muhammad R. Hajj
    • 1
  1. 1.Department of Engineering Science and Mechanics, MC 0219Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Laboratory of AeroelasticityUniversity of Sao PauloSão CarlosBrazil

Personalised recommendations