Advertisement

Nonlinear Dynamics

, Volume 71, Issue 1–2, pp 109–120 | Cite as

Nonlinear vibration analysis of harmonically excited cracked beams on viscoelastic foundations

  • D. Younesian
  • S. R. Marjani
  • E. Esmailzadeh
Original Paper

Abstract

The frequency response of a cracked beam supported by a nonlinear viscoelastic foundation has been investigated in this study. The Galerkin method in conjunction with the multiple scales method (MSM) is employed to solve the nonlinear governing equations of motion. The steady-state solutions are derived for the two different resonant conditions. A parametric sensitivity analysis is carried out and the effects of different parameters, namely the geometry and location of crack, loading position and the linear and nonlinear foundation parameters, on the frequency-response solution are examined.

Keywords

Cracked beam Nonlinear vibration Multiple scales method Parameter sensitivity Resonant frequency Viscoelastic foundation 

References

  1. 1.
    Fryba, L.: In: Vibration of Solids and Structures under Moving Loads, London: Thomas Telford (1999) CrossRefGoogle Scholar
  2. 2.
    Chen, Y.H., Huang, Y.H., Shih, C.T.: Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load. J. Sound Vib. 241, 809–824 (2001) CrossRefGoogle Scholar
  3. 3.
    Vostroukhov, A., Metrikine, A.: Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track. Int. J. Solids Struct. 40, 5723–5752 (2003) MATHCrossRefGoogle Scholar
  4. 4.
    Kargarnovin, M.H., Younesian, D.: Dynamics of Timoshenko beams on Pasternak foundation under moving load. Mech. Res. Commun. 31, 713–723 (2004) MATHCrossRefGoogle Scholar
  5. 5.
    Kargarnovin, M.H., Younesian, D., Thompson, D., Jones, C.: Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput. Struct. 83, 1865–1877 (2005) CrossRefGoogle Scholar
  6. 6.
    Younesian, D., Kargarnovin, M.H., Thompson, D.J., Jones, C.J.C.: Parametrically excited vibration of a Timoshenko beam on viscoelastic foundation subjected to a harmonic moving load. Nonlinear Dyn. 45, 75–93 (2006) MATHCrossRefGoogle Scholar
  7. 7.
    Younesian, D., Kargarnovin, M.H.: Response of the beams on random Pasternak foundations subjected to harmonic moving loads. J. Mech. Sci. Technol. 23, 2871–2882 (2010) Google Scholar
  8. 8.
    Nguyen, V.H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates; part II: infinite beam under moving harmonic loads. Comput. Struct. 86, 2056–2063 (2008) CrossRefGoogle Scholar
  9. 9.
    Ansari, M., Esmailzadeh, E., Younesian, D.: Internal-external resonance of beams on nonlinear viscoelastic foundation traversed by moving load. Nonlinear Dyn. 61, 163–182 (2010) MATHCrossRefGoogle Scholar
  10. 10.
    Ansari, M., Esmailzadeh, E., Younesian, D.: Frequency analysis of finite beams on nonlinear Kelvin–Voight foundation under moving loads. J. Sound Vib. 330, 1455–1471 (2011) CrossRefGoogle Scholar
  11. 11.
    Sapountzakis, E., Kampitsis, A.: Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads. J. Sound Vib. 330, 5410–5426 (2011) CrossRefGoogle Scholar
  12. 12.
    Ostachowicz, W., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150, 191–201 (1991) CrossRefGoogle Scholar
  13. 13.
    Lee, H., Ng, T.: Natural frequencies and modes for the flexural vibration of a cracked beam. Appl. Acoust. 42, 151–163 (1994) CrossRefGoogle Scholar
  14. 14.
    Chondros, T., Dimarogonas, A., Yao, J.: A continuous cracked beam vibration theory. J. Sound Vib. 215, 17–34 (1998) MATHCrossRefGoogle Scholar
  15. 15.
    Khiem, N., Lien, T.: A simplified method for natural frequency analysis of a multiple cracked beam. J. Sound Vib. 245, 737–751 (2001) CrossRefGoogle Scholar
  16. 16.
    Fernandez-Saez, J., Navarro, C.: Fundamental frequency of cracked beams in bending vibrations: an analytical approach. J. Sound Vib. 256, 17–31 (2002) CrossRefGoogle Scholar
  17. 17.
    Hsu, M.H.: Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method. Comput. Methods Appl. Mech. Eng. 194, 1–17 (2005) MATHCrossRefGoogle Scholar
  18. 18.
    Yang, J., Chen, Y., Xiang, Y., Jia, X.: Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. J. Sound Vib. 312, 166–181 (2008) CrossRefGoogle Scholar
  19. 19.
    Zheng, T., Ji, T.: An approximate method for determining the static deflection and natural frequency of a cracked beam. J. Sound Vib. 331, 2654–2670 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Center of Excellence in Railway Transportation, School of Railway EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations