Nonlinear Dynamics

, Volume 70, Issue 4, pp 2433–2444 | Cite as

Iterative harmonic balance for period-one rotating solution of parametric pendulum

  • Hui Zhang
  • Tian-Wei Ma
Original Paper


In this study, an iterative method based on harmonic balance for the period-one rotation of parametrically excited pendulum is proposed. Based on the definition of the period-one rotating orbit, the exact form of the solution can be obtained using the Fourier series. An iterative harmonic balance process is proposed to estimate the coefficients in the exact solution form. The general formula for each iteration step is presented. The method is evaluated using two criteria, which are the system energy error and the global residual error. The performance of the proposed method is compared with the results from multiscale method and perturbation method. The numerical results obtained with the Dormand–Prince method (ODE45 in MATLAB©) are used as the baseline of the evaluation.


Parametric pendulum Iteration Rotating orbits Harmonic balance Nonlinear systems 



The advice and guidance provided by Dr. S.C. Liu, Program Director, are gratefully acknowledged.


  1. 1.
    Koch, B.P., Leven, R.W.: Subharmonic and homoclinic bifurcations in a parametrically forced pendulum. Physica D 16, 1–13 (1985) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Leven, R.W., Pompe, B., Wilke, C., Koch, B.P.: Experiments on periodic and chaotic motions of a parametrically forced pendulum. Physica D 16, 371–384 (1985) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Clifford, M.J., Bishop, S.R.: Rotating periodic orbits of the parametrically excited pendulum. Phys. Lett. A 201, 191–196 (1995) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Garira, W., Bishop, S.R.: Rotating solutions of the parametrically excited pendulum. J. Sound Vib. 263, 233–239 (2003) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Xu, X., Wiercigroch, M., Cartmell, M.P.: Rotating orbits of a parametrically-excited pendulum. Chaos Solitons Fractals 23, 1537–1548 (2005) MATHGoogle Scholar
  6. 6.
    Xu, X., Wiercigroch, M.: Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dyn. 47, 311–320 (2007) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Lenci, S., Pavlovskaia, E., Rega, G., Wiercigroch, M.: Rotating solutions and stability of parametric pendulum by perturbation method. J. Sound Vib. 310, 243–259 (2008) CrossRefGoogle Scholar
  8. 8.
    Chatterjee, A.: Harmonic balance based averaging: approximate realizations of an asymptotic technique. Nonlinear Dyn. 32, 323–343 (2003) MATHCrossRefGoogle Scholar
  9. 9.
    Nandakumar, K., Chatterjee, A.: The simplest resonance capture problem, using harmonic balance based averaging. Nonlinear Dyn. 37, 271–284 (2004) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Basso, M., Materassi, D., Salapaka, M.: Hysteresis models of dynamic mode atomic force microscopes: analysis and identification via harmonic balance. Nonlinear Dyn. 54, 297–306 (2008) MATHCrossRefGoogle Scholar
  11. 11.
    Shen, J., Lin, K., Chen, S., Sze, K.: Bifurcation and route-to-chaos analyses for Mathieu–Cduffing oscillator by the incremental harmonic balance method. Nonlinear Dyn. 52, 403–414 (2008) MATHCrossRefGoogle Scholar
  12. 12.
    Lu, C., Lin, Y.: A modified incremental harmonic balance method for rotary periodic motions. Nonlinear Dyn. 66, 781–788 (2011) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, H.: Period-one rotating solution of parametric pendulums by iterative harmonic balance. Master Thesis, University of Hawaii at Mānoa (2012) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Hawaii at MānoaHonoluluUSA

Personalised recommendations