Nonlinear Dynamics

, Volume 70, Issue 3, pp 2259–2267 | Cite as

Evolution of optical solitary waves in a generalized nonlinear Schrödinger equation with variable coefficients

  • Xiao-Fei Wu
  • Guo-Sheng Hua
  • Zheng-Yi Ma
Original Paper


We derive two types of exact analytical solutions in terms of rational-like functions for a generalized nonlinear Schrödinger equation with variable coefficients via the methods of similarity transformation and direct ansatz. Based on these solutions, several novel optical solitary waves are constructed by selecting appropriate functions, and the main evolution features of these waves are shown by some interesting figures with computer simulation.


Nonlinear Schrödinger equation Variable coefficients Similarity transformation Rational-like solutions Optical solitary waves 



This work is supported by the National Natural Science Foundation of China (Grant No. 10772110), the Natural Science Foundation of Zhejiang Province (Grant No. Y606049), and the Applied Nonlinear Science and Technology from the Most Important Among all the Top Priority Disciplines of Zhejiang Province.


  1. 1.
    Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. Appl. Phys. Lett. 23, 142 (1973) CrossRefGoogle Scholar
  2. 2.
    Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980) CrossRefGoogle Scholar
  3. 3.
    Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53 (2005) CrossRefGoogle Scholar
  4. 4.
    Liu, X.B., Li, B.: Dynamics of solitons of the generalized (3+1)-dimensional nonlinear Schrödinger equation with distributed coefficients. Chin. Phys. B 20, 114219 (2011) CrossRefGoogle Scholar
  5. 5.
    Li, H.M., Ge, L., He, J.R.: Nonautonomous bright solitons and soliton collisions in a nonlinear medium with an external potential. Chin. Phys. B 21, 050512 (2012) CrossRefGoogle Scholar
  6. 6.
    Hasegawa, A.: Optical Solitons in Fibers. Springer, Berlin (1989) CrossRefGoogle Scholar
  7. 7.
    Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, New York (1982) MATHGoogle Scholar
  8. 8.
    Wang, L., Gao, Y.T., Sun, Z.Y., Qi, F.H., Meng, D.X., Lin, G.D.: Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Nonlinear Dyn. 67, 713 (2012) MATHCrossRefGoogle Scholar
  9. 9.
    Pitaevskii, L.P., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford (2003) MATHGoogle Scholar
  10. 10.
    Scott, A.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford Appl. and Eng. Mathematics, vol. 1. Oxford University Press, Oxford (1999). MATHGoogle Scholar
  11. 11.
    Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000) CrossRefGoogle Scholar
  12. 12.
    Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Solitary waves in nonautonomous nonlinear and dispersive systems. J. Mod. Opt. 57, 1456 (2010) MATHCrossRefGoogle Scholar
  13. 13.
    Li, M., Tian, B., Liu, W.J., Zhang, H.Q., Meng, X.H., Xu, T.: Soliton-like solutions of a derivative nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 62, 919 (2010) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    El-Danaf, T.S., Ramadan, M.A., Abd Alaal, F.E.I.: Numerical studies of the cubic nonlinear Schrödinger equation. Nonlinear Dyn. 67, 619 (2012) MATHCrossRefGoogle Scholar
  15. 15.
    Xu, T., Tian, B.: Bright N-soliton solutions in terms of the triple Wronskian for the coupled nonlinear Schrödinger equations in optical fibers. J. Phys. A, Math. Theor. 43, 245205 (2010) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cheng, X.P., Lin, J., Ye, L.J.: Asymptotical solutions of coupled nonlinear Schrödinger equations with perturbations. Chin. Phys. B 16, 2503 (2007) CrossRefGoogle Scholar
  17. 17.
    Dai, C.Q., Zhang, J.F.: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients. J. Phys. A, Math. Gen. 39, 723 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Analytical spatiotemporal localizations for the generalized (3+1)-dimensional nonlinear Schrödinger equation. Opt. Lett. 35, 1437 (2010) CrossRefGoogle Scholar
  19. 19.
    Liu, H.H., Yan, F., Xu, C.L.: The bifurcation and exact travelling wave solutions of (2+1)-dimensional nonlinear Schrödinger equation with dual-power law nonlinearity. Nonlinear Dyn. 67, 465 (2012) MATHCrossRefGoogle Scholar
  20. 20.
    Wu, X.F.: Solitary wave and periodic wave solutions for the quintic discrete nonlinear Schrödinger equation. Chaos Solitons Fractals 40, 1240 (2009) MATHCrossRefGoogle Scholar
  21. 21.
    Chong, C., Carretero-González, R., Malomed, B.A., Kevrekidis, P.G.: Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices. Physica D 238, 126 (2009) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Gómez-Gardeñes, J., Malomed, B.A., Floría, L.M., Bishop, A.R.: Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities. Phys. Rev. E 74, 036607 (2006) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yang, Z.Y., Zhao, L.C., Zhang, T., Li, Y.H., Yue, R.H.: The dynamics of nonautonomous soliton inside planar graded-index waveguide with distributed coefficients. Opt. Commun. 283, 3768 (2010) CrossRefGoogle Scholar
  24. 24.
    Deng, Y.B., Wang, C.H., Fu, X.Q., Zhang, L.F.: Evolution of the exact spatiotemporal periodic wave and soliton solutions of the (3+1)-dimensional generalized nonlinear Schrödinger equation with distributed coefficients. Opt. Commun. 284, 1364 (2011) CrossRefGoogle Scholar
  25. 25.
    Xu, S.L., Liang, J.C., Yi, L.: Exact soliton solutions to a generalized nonlinear Schrödinger equation. Commun. Theor. Phys. 53, 159 (2010) MATHCrossRefGoogle Scholar
  26. 26.
    Dai, C.Q., Wang, Y.Y., Wang, X.G.: Ultrashort self-similar solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients in the inhomogeneous fiber. J. Phys. A, Math. Theor. 44, 155203 (2011) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yan, Z.Y., Konotop, V.V., Akhmediev, N.: Three-dimensional rogue waves in nonstationary parabolic potentials. Phys. Rev. E 82, 036610 (2010) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012) CrossRefGoogle Scholar
  29. 29.
    Dai, C.Q., Wang, Y.Y., Chen, J.L.: Analytic investigation on the similariton transmission control in the dispersion decreasing fiber. Opt. Commun. 284, 3440 (2011) CrossRefGoogle Scholar
  30. 30.
    Tian, B., Gao, Y.T.: Symbolic computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342, 228 (2005) MATHCrossRefGoogle Scholar
  31. 31.
    Qian, C., Wang, L.L., Zhang, J.F.: Solitons of nonlinear Schrödinger equation with variable coefficients and interaction. Acta Phys. Sin. 60, 064214 (2011) Google Scholar
  32. 32.
    Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089 (1986) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Yan, Z.Y.: Nonautonomous rogons in the inhomogeneous nonlinear Schrödinger equation with variable coefficients. Phys. Lett. A 374, 672 (2010) MATHCrossRefGoogle Scholar
  34. 34.
    Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137 (2009) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.College of Computer and Information EngineeringZhejiang Lishui UniversityLishuiChina
  2. 2.College of Mathematics and PhysicsZhejiang Lishui UniversityLishuiChina
  3. 3.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina

Personalised recommendations