Advertisement

Nonlinear Dynamics

, Volume 70, Issue 3, pp 2129–2143 | Cite as

Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy

  • Shih-Yu Li
  • Cheng-Hsiung Yang
  • Chin-Teng Lin
  • Li-Wei Ko
  • Tien-Ting Chiu
Original Paper

Abstract

In this paper, a new effective approach—backstepping with Ge–Yao–Chen (GYC) partial region stability theory (called BGYC in this article) is proposed to applied to adaptive synchronization. Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller, and it presents a systematic procedure for selecting a proper controller in chaos synchronization. We further combine the systematic backstepping design and GYC partial region stability theory in this article, Lyapunov function can be chosen as a simple linear homogeneous function of states, and the controllers and the update laws of parameters shall be much simpler. Further, it also introduces less simulation error—the numerical simulation results show that the states errors and parametric errors approach to zero much more exactly and efficiently, which are compared with the original one. Two cases are presented in the simulation results to show the effectiveness and feasibility of our new strategy.

Keywords

BGYC Synchronization Chaotic system 

Notes

Acknowledgements

This work was supported in part by the UST-UCSD International Center of Excellence in Advanced Bioengineering sponsored by the Taiwan National Science Council I-RiCE Program under Grant No. NSC-100-2911-I-009-101. This research was supported by the National Science Council, Republic of China, under Grant No. NSC 99-2221-E-009-019.

References

  1. 1.
    An, Z., Zhu, H., Li, X., Xu, C., Xu, Y., Li, X.: Nonidentical linear pulse-coupled oscillators model with application to time synchronization in wireless sensor networks. IEEE Trans. Ind. Electron. 58, 2205–2215 (2011) CrossRefGoogle Scholar
  2. 2.
    Chen, C.H., Sheu, L.J., Chen, H.K., Chen, J.H., Wang, H.C., Chao, Y.C., Lin, Y.K.: A new hyper-chaotic system and its synchronization. Nonlinear Anal., Real World Appl. 10, 2088–2096 (2009) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Guo, X., Wu, W., Chen, Z.: Multiple-complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks. IEEE Trans. Ind. Electron. 58, 1194–1204 (2011) CrossRefGoogle Scholar
  4. 4.
    Huang, Y., Wang, Y.W., Xiao, J.W.: Generalized lag-synchronization of continuous chaotic system. Chaos Solitons Fractals 40, 766–770 (2009) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Zhou, Z.W., Guo, G.C.: Decoupling neighboring qubits in quantum computers through bang–bang pulse control. Phys. Lett. A 327, 391–396 (2004) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn. 62, 609–614 (2010) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bowong, S.: Optimal control of the transmission dynamics of tuberculosis. Nonlinear Dyn. 61, 729–748 (2010) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Chang, C.Y., Li, S.T.: Active noise control in headsets by using a low-cost microcontroller. IEEE Trans. Ind. Electron. 58, 1936–1942 (2011) CrossRefGoogle Scholar
  10. 10.
    Pan, L., Zhou, W., Fang, J., Li, D.: A novel active pinning control for synchronization and anti-synchronization of new uncertain unified chaotic systems. Nonlinear Dyn. 62, 417–425 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Feng, C.F.: Projective synchronization between two different time-delayed chaotic systems using active control approach. Nonlinear Dyn. 62, 453–459 (2010) MATHCrossRefGoogle Scholar
  12. 12.
    Yong, X., Shaojuan, M., Huiqing, Z.: Hopf bifurcation control for stochastic dynamical system with nonlinear random feedback method. Nonlinear Dyn. 65, 77–84 (2011) MATHCrossRefGoogle Scholar
  13. 13.
    Wang, T., Chen, L.: Nonlinear analysis of a microbial pesticide model with impulsive state feedback control. Nonlinear Dyn. 65, 1–10 (2011) MATHCrossRefGoogle Scholar
  14. 14.
    Wen, G.X., Liu, Y.J., Tong, S.C., Li, X.L.: Adaptive neural output feedback control of nonlinear discrete-time systems. Nonlinear Dyn. 65, 65–75 (2011) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen, C.C., Hsu, C.H., Chen, Y.J., Lin, Y.F.: Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control. Chaos Solitons Fractals 33, 885–900 (2007) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Skruch, P.: Feedback stabilization of a class of nonlinear second-order systems. Nonlinear Dyn. 59, 681–693 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Feng, C.S., Chen, S.L.: Stochastic stability of Duffing–Mathieu system with delayed feedback control under white noise excitation. Commun. Nonlinear Sci. Numer. Simul. 17, 3763–3771 (2012) MATHCrossRefGoogle Scholar
  18. 18.
    Lee, S.M., Choi, S.J., Ji, D.H., Park, J.H., Won, S.C.: Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Liu, X., Gao, Q., Niu, L.: A revisit to synchronization of Lurie systems with time-delay feedback control. Nonlinear Dyn. 59, 297–307 (2010) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Zhou, J., Xu, D., Zhang, J., Liu, C.: Spectrum optimization-based chaotification using time-delay feedback control. Chaos Solitons Fractals 45, 815–824 (2012) CrossRefGoogle Scholar
  21. 21.
    Liaw, Y.M., Tung, P.C.: Application of the differential geometric method to control a noisy chaotic system via dither smoothing. Phys. Lett. A 239(1–2), 51–58 (1998) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Li, S.Y., Ge, Z.M.: Pragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear control. Nonlinear Dyn. 64, 77–87 (2011) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bagheri, A., Karimi, T., Amanifard, N.: Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers. Appl. Soft Comput. 10, 908–918 (2010) CrossRefGoogle Scholar
  24. 24.
    Zhou, N., Liu, Y.J., Tong, S.C.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input. Nonlinear Dyn. 64, 771–778 (2011) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hwang, J.-h., Kwak, H.-j., Park, G.-t.: Adaptive interval type-2 fuzzy sliding mode control for unknown chaotic system. Nonlinear Dyn. 63, 491–502 (2011) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Soyguder, S., Alli, H.: Fuzzy adaptive control for the actuators position control and modeling of an expert system. Expert Syst. Appl. 37, 2072–2080 (2010) CrossRefGoogle Scholar
  27. 27.
    Boulkroune, A., M’Saad, M.: A fuzzy adaptive variable-structure control scheme for uncertain chaotic MIMO systems with sector nonlinearities and dead-zones. Expert Syst. Appl. 38, 14744–14750 (2011) CrossRefGoogle Scholar
  28. 28.
    Li, X.F., Leung, A.C.S., Han, X.P., Liu, X.J., Chu, Y.D.: Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 63, 263–275 (2011) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Ketata, R., Rezgui, Y., Derbe, N.: Stability and robustness of fuzzy adaptive control of nonlinear systems. Appl. Soft Comput. 11, 166–178 (2011) CrossRefGoogle Scholar
  30. 30.
    Lin, C.K.: Radial basis function neural network-based adaptive critic control of induction motors. Appl. Soft Comput. 11, 3066–3074 (2011) CrossRefGoogle Scholar
  31. 31.
    Orlowska-Kowalska, T., Dybkowski, M., Szabat, K.: Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors. IEEE Trans. Ind. Electron. 57, 553–564 (2010) CrossRefGoogle Scholar
  32. 32.
    Li, S.Y., Ge, Z.M.: A novel study of parity and attractor in the time reversed Lorentz system. Phys. Lett. A 373, 4053–4059 (2009) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Baek, J.: Adaptive fuzzy bilinear feedback control design for synchronization of TS fuzzy bilinear generalized Lorenz system with uncertain parameters. Phys. Lett. A 374, 1827–1834 (2010) MATHCrossRefGoogle Scholar
  34. 34.
    Bao, Y., Wang, H., Zhang, J.: Adaptive inverse control of variable speed wind turbine. Nonlinear Dyn. 61, 819–827 (2010) MATHCrossRefGoogle Scholar
  35. 35.
    Luo, Y., Chen, Y.Q., Ahn, H.S., Pi, Y.: Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments. Control Eng. Pract. 18, 1022–1036 (2010) CrossRefGoogle Scholar
  36. 36.
    Peng, J., Wang, J., Wang, Y.: Neural network based robust hybrid control for robotic system: an H approach. Nonlinear Dyn. 65, 421–431 (2010) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Che, Y.Q., Wang, J., Chan, W.L., Tsang, K.M.: Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control. Nonlinear Dyn. 61, 847–857 (2010) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Shi, X., Wang, Z.: Robust chaos synchronization of four-dimensional energy resource system via adaptive feedback control. Nonlinear Dyn. 60, 631–637 (2010) MATHCrossRefGoogle Scholar
  39. 39.
    Rehan, M., Hong, K.S.: LMI-based robust adaptive synchronization of FitzHugh–Nagumo neurons with unknown parameters under uncertain external electrical stimulation. Phys. Lett. A 375, 1666–1670 (2011) MATHCrossRefGoogle Scholar
  40. 40.
    Peng, Y.F.: Development of robust intelligent tracking control system for uncertain nonlinear systems using H control technique. Appl. Soft Comput. 11, 3135–3146 (2011) CrossRefGoogle Scholar
  41. 41.
    Yoneyama, J.: Robust guaranteed cost control of uncertain fuzzy systems under time-varying sampling. Appl. Soft Comput. 11, 249–255 (2011) CrossRefGoogle Scholar
  42. 42.
    Mehdi, F.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn. 61, 655–666 (2010) MATHCrossRefGoogle Scholar
  43. 43.
    Hu, Q., Xiao, B.: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64, 13–23 (2011) MathSciNetCrossRefGoogle Scholar
  44. 44.
    Lian, J., Wang, M.: Sliding-mode control of switched delay systems with nonlinear perturbations: average dwell time approach. Nonlinear Dyn. 62, 791–798 (2010) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Javadi-Moghaddam, J., Bagheri, A.: An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle. Expert Syst. Appl. 37, 647–660 (2010) CrossRefGoogle Scholar
  46. 46.
    Lu, J., Cao, J.: Adaptive synchronization in tree-like dynamical networks. Nonlinear Anal., Real World Appl. 8(4), 1252–1260 (2007) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Botmart, T., Niamsup, P.: Adaptive control and synchronization of the perturbed Chua’s system. Math. Comput. Simul. 75(1–2), 37–55 (2007) MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Chen, X., Lu, J.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364(2), 123–128 (2007) MATHCrossRefGoogle Scholar
  49. 49.
    Ge, Z.M., Yu, J.K., Chen, Y.T.: Pragmatical asymptotical stability theorem with application to satellite system. Jpn. J. Appl. Phys. 38, 6178–6179 (1999) CrossRefGoogle Scholar
  50. 50.
    Ge, Z.M., Yu, J.K.: Pragmatical asymptotical stability theorem on partial region and for partial variable with applications to gyroscopic systems. Chin. J. Mech. 16(4), 179–187 (2000) Google Scholar
  51. 51.
    Ge, Z.M., Yao, C.W., Chen, H.K.: Stability on partial region in dynamics. J. Chin. Soc. Mech. Eng. 15(2), 140–151 (1994) Google Scholar
  52. 52.
    Ge, Z.M., Chen, H.K.: Three asymptotical stability theorems on partial region with applications. Jpn. J. Appl. Phys. 37, 2762–2773 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Shih-Yu Li
    • 1
    • 2
  • Cheng-Hsiung Yang
    • 3
  • Chin-Teng Lin
    • 2
    • 4
  • Li-Wei Ko
    • 1
    • 2
  • Tien-Ting Chiu
    • 5
  1. 1.Department of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuRepublic of China
  2. 2.Brain Research CenterNational Chiao Tung UniversityHsinchuRepublic of China
  3. 3.Department of Automatic ControlNational Taiwan University of Science and TechnologyTaipei CityRepublic of China
  4. 4.Department of Electrical and Control EngineeringNational Chiao Tung UniversityHsinchuRepublic of China
  5. 5.Department of Industrial and Systems EngineeringChung Yuan Christian UniversityChung-LiRepublic of China

Personalised recommendations