Nonlinear Dynamics

, Volume 70, Issue 2, pp 1645–1655 | Cite as

Bifurcations of heteroclinic loop accompanied by pitchfork bifurcation

  • Fengjie Geng
  • Yancong Xu
Original Paper


In this paper, using the local coordinate moving frame approach, we investigate bifurcations of generic heteroclinic loop with a hyperbolic equilibrium and a nonhyperbolic equilibrium which undergoes a pitchfork bifurcation. Under some generic hypotheses, the existence of homoclinic loop, heteroclinic loop, periodic orbit and three or four heteroclinic orbits is obtained. In addition, the non-coexistence conditions for homoclinic loop and periodic orbit are also given. Note that the results achieved here can be extended to higher dimensional systems.


Local coordinate moving frame Pitchfork bifurcation Generic heteroclinic loop Nonhyperbolic equilibrium 



Project supported by the National NSF of China (No. 10926051, 11101385, 11171085), the Fundamental Research Funds for the Central Universities (2010ZY30, 2012093), and by the Science Foundation of Zhejiang Province through grant Y6100081.


  1. 1.
    Chow, S.N., Deng, B., Friedman, J.M.: Theory and applications of a nongeneric heteroclinic loop bifurcation. SIAM J. Appl. Math. 59, 1303–1321 (1999) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Champneys, A.R.: Codimension-one persistence beyond all orders of homoclinic orbits to singular saddle centres in reversible systems. Nonlinearity 14, 87–112 (2001) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Geng, F.J., Liu, D., Zhu, D.M.: Bifurcations of generic heteroclinic loop accompanied with transcritical bifurcation. Int. J. Bifurc. Chaos 4, 1069–1083 (2008) MathSciNetGoogle Scholar
  4. 4.
    Geng, F.J., Zhu, D.M., Xu, Y.C.: Bifurcations of heterodimensional cycles with two saddle points. Chaos Solitons Fractals 39, 2063–2075 (2009) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Liu, X.B., Fu, X.L., Zhu, D.M.: Homoclinic bifurcation with nonhyperbolic equilibria. Nonlinear Anal. 66, 2931–2939 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Rademacher, J.D.M.: Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit. J. Differ. Equ. 218, 390–443 (2005) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Sun, J.H., Luo, D.J.: Local and global bifurcations with nonhyperbolic equilibria. Sci. China Ser. A 37, 523–534 (1994) MathSciNetMATHGoogle Scholar
  8. 8.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical System and Chaos. Springer, New York (1990) Google Scholar
  9. 9.
    Zhu, D.M., Xia, Z.H.: Bifurcation of heteroclinic loops. Sci. China Ser. A 41, 837–848 (1998) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Xu, Y.C., Zhu, D.M., Liu, X.B.: Bifurcations of multiple homoclinics in general dynamical systems. Discrete Contin. Dyn. Syst., Ser. A 30(3), 945–963 (2011) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Xu, Y.C., Zhu, D.M.: Bifurcation of heterodimensional cycles with one orbit flip and one inclination flip. Nonlinear Dyn. 60(1), 1–13 (2010) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Xu, Y.C., Zhu, D.M., Geng, F.J.: Codimension 3 heteroclinic bifurcations with orbit and inclination flips in reversible systems. Int. J. Bifurc. Chaos 18(12), 3689–3701 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lamb, J.S.W., Teixeira, M.A., Webster, K.N.: Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R 3. J. Differ. Equ. 219, 78–115 (2005) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bonatti, C., Diaz, L.J., Marcelo, V.: Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective. Science Publishing House, Beijing (2007) Google Scholar
  15. 15.
    Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. In: Broer, H., Takens, F., Hasselblatt, B. (eds.) Handbook of Dynamical Systems III, pp. 379–524. Elsevier, Amsterdam (2010) CrossRefGoogle Scholar
  16. 16.
    Cao, H.J., Chen, G.R.: A simplified optimal control method for homoclinic bifurcations. Nonlinear Dyn. 42(1), 43–61 (2005) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Homburg, A.J., Jukes, A.C., Knobloch, J., Lamb, J.S.W.: Bifurcation from codimension one relative homoclinic cycles. Trans. Am. Math. Soc. 363, 5663–5701 (2011) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Wang, R.P., Xiao, D.M.: Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka-Volterra system. Nonlinear Dyn. 59(3), 411–422 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.College of Mathematics and ScienceChina University of Geosciences (Beijing)BeijingChina
  2. 2.Department of MathematicsHangzhou Normal UniversityHangzhouChina
  3. 3.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations