Nonlinear Dynamics

, Volume 70, Issue 2, pp 1241–1253 | Cite as

Secure communication using chaotic synchronization in mutually coupled semiconductor lasers

  • A. D. Mengue
  • B. Z. Essimbi
Original Paper


In this paper, we propose a scheme of the secure communication systems, in the frame of the chaotic synchronization of two semiconductor lasers with optical feedback in mutually coupled configuration within the new modified rate equation of lasers by using the numerical simulations. We explore the robustness of this synchronization scheme with parameter mismatches. A high sensitivity of the synchronization of the lasers via the new control parameter mismatch is discussed in the temporal and frequency domains. Moreover, a possible complete synchronization with negative time lag is discussed. As a result, this leads the receiver to be in the future state of the transmitter. To sustain this proposed scheme, we present the encrypted transmission of binary messages at a bit rate of 250 Mbits/s, and we show that the digital messages at the output receiver laser are perfectly recovered using a finite impulse response filter. The error bits, the error rates as well as the effects of parameter mismatches on the recovered messages are evaluated.


Chaotic synchronization Chaotic communication Semiconductor lasers Optical feedback 


  1. 1.
    Yousefi, M., Barbarin, Y., Beri, S., Bente, E.A.J.M., Smit, M.K., Nötzel, R., Lenstra, D.: New role for nonlinear dynamics and chaos in integrated semiconductor laser technology. Phys. Rev. Lett. 98, 044101 (2007). doi: 10.1103/PhysRevLett.98.044101 CrossRefGoogle Scholar
  2. 2.
    Soriano, M.C., Oliveras, F.R., Colet, P., Mirasso, C.R.: Synchronization properties of coupled semiconductor lasers subject to filtered optical feedback. Phys. Rev. E 78, 046218 (2008). doi: 10.1103/PhysRevE.78.046218 CrossRefGoogle Scholar
  3. 3.
    Fischer, I., van Tartwijk, G.H.M., Levine, A.M., Elsasser, W., Göbel, E., Lenstra, D.: Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. Phys. Rev. Lett. 76, 220–223 (1996). doi: 10.1103/PhysRevLett.76.220 CrossRefGoogle Scholar
  4. 4.
    Ahlers, V., Parlitz, U., Lauterborn, W.: Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers. Phys. Rev. E 58, 7208–7213 (1998). doi: 10.1103/PhysRevE.58.7208 CrossRefGoogle Scholar
  5. 5.
    Annovazzi-lodi, V., Donati, S., Scire, A.: Synchronization of chaotic injected lasers systems and its application to optical cryptography. IEEE J. Quantum Electron. 32, 953–959 (1996). doi:S0018-9197(96)04132-2 CrossRefGoogle Scholar
  6. 6.
    Wu, L., Zhu, S., Ni, Y.: Combination of two basic types of synchronization in a coupled semiconductor laser system. Eur. Phys. J. D 41, 349–354 (2007). doi: 10.1140/epjd/e2006-00238-4 CrossRefGoogle Scholar
  7. 7.
    Fujino, H., Ohtsubo, J.: Synchronization of chaotic oscillations in mutually coupled semiconductor lasers. Opt. Rev. 8, 351–357 (2001). doi: 10.1007/s10043-001-0351-7 CrossRefGoogle Scholar
  8. 8.
    Deng, T., Xia, G., Cao, L., Chen, J., Lin, X., Wu, Z.: Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback. Opt. Commun. 282, 2243–2249 (2009) CrossRefGoogle Scholar
  9. 9.
    Ohtsubo, J.: Semiconductor Lasers, Instability and Chaos. Springer, Berlin (2006) Google Scholar
  10. 10.
    Short, K.M.: Step toward unmasking secure communications. Int. J. Bifurc. Chaos 4, 959–979 (1994). MATHCrossRefGoogle Scholar
  11. 11.
    Mengue, A.D., Essimbi, B.Z.: Complex chaos and bifurcations of semiconductor lasers subjected to optical injection. Opt. Quantum Electron. 42, 389 (2011). doi: 10.1007/s11082-011-9474-7 CrossRefGoogle Scholar
  12. 12.
    Heil, T., Fischer, I., Elsäßer, W.: Coexistence of low-frequency fluctuations and stable emission on a single high-gain mode in semiconductor lasers with external optical feedback. Phys. Rev. A 58, 2672–2675 (1998). doi: 10.1103/PhysRevA.58.R2672 CrossRefGoogle Scholar
  13. 13.
    Hohl, A., Van der Linden, H.J.C., Roy, R.: Determinism and stochasticity of power-dropout events in semiconductor lasers with optical feedback. Opt. Lett. 20, 2396 (1995). doi: 10.1364/OL.20.002396 CrossRefGoogle Scholar
  14. 14.
    Buldú, J.M., García-Ojalvo, J., Torrent, M.C.: Delay-induced resonances in an optical system with feedback. Phys. Rev. E 69, 046207 (2004). doi: 10.1103/PhysRevE.69.046207 CrossRefGoogle Scholar
  15. 15.
    Tang, S., Liu, J.M.: Chaos synchronization in semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Electron. 39, 708–715 (2003). doi: 10.1109/JQE.2003.810775 CrossRefGoogle Scholar
  16. 16.
    Xia, G., Wu, Z., Liao, J.: Theoretical investigations of cascaded chaotic synchronization and communication based on optoelectronic negative feedback semiconductor lasers. Opt. Commun. 282, 1009–1015 (2009). doi: 10.1016/j.optcom.2008.11.062 CrossRefGoogle Scholar
  17. 17.
    Lui, Y., Davis, P., Takiguchi, Y., Aida, T., Saito, S., Liu, J.M.: Injection locking and synchronization of periodic and chaotic signals in semiconductor lasers. IEEE J. Quantum Electron. 39, 269–277 (2003). doi: 10.1109/JQE.2002.807192 CrossRefGoogle Scholar
  18. 18.
    Koryukin, V., Mandel, P.: Two regimes of synchronization in unidirectionally coupled semiconductor lasers. Phys. Rev. E 65, 026201 (2002). doi: 10.1103/PhysRevE.65.026201 CrossRefGoogle Scholar
  19. 19.
    Massoller, C.: Anticipation in synchronization of chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 86, 2782–2785 (2001). doi: 10.1103/PhysRevLett.86.2782 CrossRefGoogle Scholar
  20. 20.
    Mengue, A.D., Essimbi, B.Z.: Stability and on-off chaotic states mechanisms of semiconductor lasers with optical injection on the new modified rate equation model. Phys. Scr. 85, 025404 (2012). doi: 10.1088/0031-8949/85/02/025404 CrossRefGoogle Scholar
  21. 21.
    Mengue, A.D., Essimbi, B.Z.: Symmetry chaotic attractors and bursting dynamics of semiconductor lasers subjected to optical injection. Chaos 22, 013113 (2012). doi: 10.1063/1.3675623 CrossRefGoogle Scholar
  22. 22.
    Kanakidis, D., Argyris, A., Syvridis, D.: Performance characterization of high-bit-rate optical chaotic communication systems in a back-to-back configuration. J. Lightwave Technol. 21, 750 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Yaounde 1YaoundeCameroon

Personalised recommendations