Nonlinear Dynamics

, Volume 70, Issue 2, pp 1079–1094 | Cite as

Quasiperiodic and exponential transient phase waves and their bifurcations in a ring of unidirectionally coupled parametric oscillators

Original Paper


Phase waves rotating in a ring of unidirectionally coupled parametric oscillators are studied. The system has a pair of spatially uniform stable periodic solutions with a phase difference and an unstable quasiperiodic traveling phase wave solution. They are generated from the origin through a period doubling bifurcation and the Neimark–Sacker bifurcation, respectively. In transient states, phase waves rotating in a ring are generated, the duration of which increases exponentially with the number of oscillators (exponential transients). A power law distribution of the duration of randomly generated phase waves and the noise-sustained propagation of phase waves are also shown. These properties of transient phase waves are well described with a kinematical equation for the propagation of wave fronts. Further, the traveling phase wave is stabilized through a pitchfork bifurcation and changes into a standing wave through pinning. These bifurcations and exponential transient rotating waves are also shown in an autonomous system with averaging and a coupled map model, and they agree with each other.


Parametric oscillator Quasiperiodic oscillation Traveling phase wave Exponential transient Noise-sustained propagation 


  1. 1.
    Kawasaki, K., Ohta, T.: Kink dynamics in one-dimensional nonlinear systems. Physica A 116, 573–593 (1982) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carr, J., Pego, R.L.: Metastable patterns in solutions of u=εuf(u). Commun. Pure Appl. Math. 42, 523–576 (1989) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ei, S., Ohta, T.: Equation of motion for interacting pulses. Phys. Rev. E 50, 4672–4678 (1994) CrossRefGoogle Scholar
  4. 4.
    Ward, M.J.: Dynamic metastability and singular perturbations. In: Delfour, M.C. (ed.) Boundaries, Interfaces, and Transitions. CRM Proceedings and Lecture Notes, vol. 13, pp. 237–263. AMS, Providence (1998) Google Scholar
  5. 5.
    Ward, M.J.: Metastable dynamics and exponential asymptotics in multi-dimensional domains. In: Jones, C.K.R.T., Khibnik, A.I. (eds.) Multiple-Time-Scale Dynamical Systems. IMA Volumes in Mathematics and Its Applications, vol. 122, pp. 233–259. Springer, New York (2001) CrossRefGoogle Scholar
  6. 6.
    Horikawa, Y., Kitajima, H.: Duration of transient oscillations in ring networks of unidirectionally coupled neurons. Physica D 238, 216–225 (2009) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Horikawa, Y.: Exponential transient propagating oscillations in a ring of spiking neurons with unidirectional slow inhibitory synaptic coupling. J. Theor. Biol. 289, 151–159 (2011) CrossRefGoogle Scholar
  8. 8.
    Horikawa, Y.: Exponential dispersion relation and its effects on unstable propagating pulses in unidirectionally coupled symmetric bistable elements. Commun. Nonlinear Sci. Numer. Simul. 17, 2791–2803 (2012) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Horikawa, Y.: Exponential transient oscillations and standing pulses in rings of coupled symmetric bistable maps. In: Proc. 2010 Int. Symp. Nonlinear Theory and Its Applications (NOLTA 2010), pp. 561–564 (2010) Google Scholar
  10. 10.
    Horikawa, Y., Kitajima, H.: Exponential transient rotating waves in a bistable ring of unidirectionally coupled maps. Physica D 241, 106–114 (2012) CrossRefGoogle Scholar
  11. 11.
    Hayashi, C.: Nonlinear Oscillations in Physical Systems. McGraw-Hill, New York (1964) MATHGoogle Scholar
  12. 12.
    Shimura, M.: Nonlinear Circuit Theory. Syokohdo, Tokyo (1969). (in Japanese) Google Scholar
  13. 13.
    Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn. Pergamon, Oxford (1976) Google Scholar
  14. 14.
    Butikov, E.I.: Parametric excitation of a linear oscillator. Eur. J. Phys. 25, 535–554 (2004) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Goto, E.: The parametron, a digital computing element which utilizes parametric oscillation. Proc. IRE 47, 1304–1316 (1959) CrossRefGoogle Scholar
  16. 16.
    Hoveijn, I., Ruijgrok, M.: The stability of parametrically forced coupled oscillators in sum resonance. Z. Angew. Math. Phys. 46, 384–392 (1995) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Newman, W.I., Rand, R.H., Newman, A.L.: Dynamics of a nonlinear parametrically excited partial differential equation. Chaos 9, 242–253 (1999) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Oliveira, A.G., de Garira, W.S., Bishop, S.R.: Out-of-phase vs in-phase synchronization of two parametrically excited pendula. In: Boccaletti, S., et al. (eds.) Space-Time Chaos: Characterization, Control and Synchronization, pp. 233–250. World Scientific, Singapore (2001) Google Scholar
  19. 19.
    Shapiro, V.E.: Rotating class of parametric resonance processes in coupled oscillators. Phys. Lett. A 290, 288–296 (2001) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Bena, I., Van den Broeck, C., Kawai, R., Copelli, M., Lindenberg, K.: Collective behavior of parametric oscillators. Phys. Rev. E 65, 036611 (2002) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Goldobin, D., Pikovsky, A.: Collective modes in parametrically excited oscillator arrays. Europhys. Lett. 59, 193–198 (2002) CrossRefGoogle Scholar
  22. 22.
    Kawai, R., Lindenberg, K., Van den Broeck, C.: Parametrically modulated oscillator dimer: an analytic solution. Physica A 312, 119–140 (2002) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003) CrossRefGoogle Scholar
  24. 24.
    Bakri, T., Nabergoj, R., Tondl, A., Verhulst, F.: Parametric excitation in non-linear dynamics. Int. J. Non-Linear Mech. 39, 311–329 (2004) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Sinhai, S.C., Redkari, S., Deshmukh, V., Butcher, E.A.: Order reduction of parametrically excited nonlinear systems: techniques and applications. Nonlinear Dyn. 41, 237–273 (2005) CrossRefGoogle Scholar
  26. 26.
    Chen, W., Lin, W., Zhu, Y.: Onset instability of a parametrically excited pendulum array. Phys. Rev. E 75, 016606 (2007) CrossRefGoogle Scholar
  27. 27.
    Fatimah, S., Ruijgrok, M.: Bifurcations in an autoparametric system in 1:1 internal resonance with parametric excitation. Int. J. Non-Linear Mech. 37, 297–308 (2002) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Danzl, P., Moehlis, J.: Weakly coupled parametrically forced oscillator networks: existence, stability, and symmetry of solutions. Nonlinear Dyn. 59, 661–680 (2010) MATHCrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Hu, S.Q., Du, G.H.: Chaos synchronization of two parametrically excited pendulums. J. Sound Vib. 223, 247–254 (1999) CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Du, G.H.: Spatio-temporal synchronization of coupled parametrically excited pendulum array. J. Sound Vib. 239, 983–994 (2001) CrossRefGoogle Scholar
  31. 31.
    Lei, Y., Xu, W., Shen, J., Fang, T.: Global synchronization of two parametrically excited systems using active control. Chaos Solitons Fractals 28, 428–436 (2006) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Idowu, B.A., Vincent, U.E., Njah, A.N.: Synchronization of chaos in non-identical parametrically excited systems. Chaos Solitons Fractals 39, 2322–2331 (2009) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Olusola, O.I., Vincent, U.E., Njah, A.N.: Multi-stability and basin crisis in synchronized parametrically driven oscillators. Nonlinear Dyn. 62, 717–727 (2010) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Denardo, B., Galvin, B., Greenfield, A., Larraza, A., Putterman, S., Wright, W.: Observations of localized structures in nonlinear lattices: domain walls and kinks. Phys. Rev. Lett. 68, 1730–1733 (1992) CrossRefGoogle Scholar
  35. 35.
    Chen, W.-Z.: Experimental observation of solitons in a 1D nonlinear lattice. Phys. Rev. B 49, 15063–15066 (1994) CrossRefGoogle Scholar
  36. 36.
    Huang, G., Lou, S.-Y., Velarde, M.G.: Gap solitons, resonant kinks, and intrinsic localized modes in parametrically excited diatomic lattices. Int. J. Bifurc. Chaos 6, 1775–1787 (1996) MATHCrossRefGoogle Scholar
  37. 37.
    Barashenkov, I.V., Zemlyanaya, E.V.: Stable complexes of parametrically driven, damped nonlinear Schrödinger solitons. Phys. Rev. Lett. 83, 2568–2571 (1999) CrossRefGoogle Scholar
  38. 38.
    Hennig, D.: Periodic, quasiperiodic, and chaotic localized solutions of a driven, damped nonlinear lattice. Phys. Rev. E 59, 1637–1645 (1999) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Alexeeva, N.V., Barashenkov, I.V., Tsironis, G.P.: Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators. Phys. Rev. Lett. 84, 3053–3056 (2000) CrossRefGoogle Scholar
  40. 40.
    Feng, Y., Qin, W.-X., Zheng, Z.: Existence of localized solutions in the parametrically driven and damped DNLS equation in high-dimensional lattices. Phys. Lett. A 346, 99–110 (2005) CrossRefGoogle Scholar
  41. 41.
    Susanto, H., Hoq, Q.E., Kevrekidis, P.G.: Stability of discrete solitons in the presence of parametric driving. Phys. Rev. E 74, 067601 (2006) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Clerc, M.G., Coulibaly, S., Laroze, D.: Localized states beyond the asymptotic parametrically driven amplitude equation. Phys. Rev. E 77, 056209 (2008) CrossRefGoogle Scholar
  43. 43.
    Cuevas, J., English, L.Q., Kevrekidis, P.G., Anderson, M.: Discrete breathers in a forced-damped array of coupled pendula: modeling, computation, and experiment. Phys. Rev. Lett. 102, 224101 (2009) CrossRefGoogle Scholar
  44. 44.
    Zemlyanaya, E.V., Alexeeva, N.V.: Oscillating solitons of the driven, damped nonlinear Schrödinger equation. Theor. Math. Phys. 159, 870–876 (2009) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Horikawa, Y., Kitajima, H.: Exponential transient phase waves in a ring of unidirectionally coupled parametric oscillators. In: Proc. 2011 Int. Symp. Nonlinear Theory and Its Applications (NOLTA 2011), pp. 216–219 (2011) Google Scholar
  46. 46.
    Collins, J.J., Stewart, I.: A group-theoretic approach to rings of coupled biological oscillators. Biol. Cybern. 71, 95–103 (1994) MATHCrossRefGoogle Scholar
  47. 47.
    Horikawa, Y.: Duration of transient fronts in a bistable reaction–diffusion equation in a one-dimensional bounded domain. Phys. Rev. E 78, 066108 (2008) CrossRefGoogle Scholar
  48. 48.
    Horikawa, Y., Kitajima, H.: Effects of noise and variations on the duration of transient oscillations in unidirectionally coupled bistable ring networks. Phys. Rev. E 80, 021934 (2009) CrossRefGoogle Scholar
  49. 49.
    Horikawa, Y., Kitajima, H.: Noise-sustained propagation of unstable pulses due to exponential interaction between pulse fronts in bistable systems with flows. Phys. Rev. E 81, 041101 (2010) CrossRefGoogle Scholar
  50. 50.
    Goel, N.S., Richter-Dyn, N.: Stochastic Models in Biology. Academic Press, New York (1974) Google Scholar
  51. 51.
    Tél, T., Lai, Y.C.: Chaotic transients in spatially extended systems. Phys. Rep. 460, 245–275 (2008) MathSciNetCrossRefGoogle Scholar
  52. 52.
    Carretero-González, R., Arrowsmith, D.K., Vivaldi, F.: Mode-locking in coupled map lattices. Physica D 103, 381–403 (1997) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Faculty of EngineeringKagawa UniversityTakamatsuJapan

Personalised recommendations