Skip to main content
Log in

Observer-based controller for discrete-time systems: a state dependent Riccati equation approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an observer-based controller for discrete-time nonlinear dynamical systems is proposed. After transforming the nonlinear system to a linear structure having state-dependent coefficient matrices (SDC), a recursive regularized least-square (RLS) state estimator is developed. The observed states are then used to generate either a constrained or unconstrained state feedback controller using the state dependent Riccati equation (SDRE) approach. The stability of the observer-based control system is rigorously analyzed in a theoretical frame work. Applications to different numerical examples as well as to a practical case study demonstrate the effectiveness of the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banks, H.T., Bortz, D.M., Holte, S.E.: Incorporation of variability into the modeling of viral delays in HIV infection dynamics. Math. Biosci. 183, 63–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banks, H.T., Beeler, S.C., Kepler, G.M., Tran, H.T.: Reduced order modeling and control of thin film growth in an HPCVD reactor. SIAM J. Appl. Math. 62(4), 1251–1280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Parrish, D.K., Ridgely, D.B.: Attitude control of a satellite using the SDRE method. In: Proc. of the American Control Conference 1997, Albuquerque, NM, pp. 942–946 (1997)

    Google Scholar 

  4. Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  5. Isidori, A.: Nonlinear Control Systems. Springer, New York (1995)

    MATH  Google Scholar 

  6. Shamma, J.S., Athens, M.: Analysis of gain scheduled control for nonlinear plants. IEEE Trans. Autom. Control 35(8), 898–907 (1990)

    Article  MATH  Google Scholar 

  7. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  8. Peng, C.-C., Hsue, A.W.-J., Chen, C.-L.: Variable structure based robust backstepping controller design for nonlinear systems. Nonlinear Dyn. 63, 253–262 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bowong, S.: Adaptive synchronization of chaotic systems with unknown bounded uncertainties vis backstepping approach. Nonlinear Dyn. 49, 59–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Slotine, J.-J.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  11. Huang, Y.J., Wang, Y.J.: Steady-state analysis for a class of sliding mode controlled systems using describing function method. Nonlinear Dyn. 30, 223–241 (2002)

    Article  MATH  Google Scholar 

  12. Koofigar, H.R., Hosseinnia, S., Sheikoleslam: Robust adaptive nonlinear control for uncertain control-affine systems and its applications. Nonlinear Dyn. 56, 13–22 (2009)

    Article  MATH  Google Scholar 

  13. Li, T., Wang, D., Chen, N.: Adaptive fuzzy control of uncertain MIMO nonlinear systems in block-triangular forms. Nonlinear Dyn. 63, 105–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Y.J., Wang, Z.F.: Adaptive fuzzy controller design of nonlinear systems with unknown gain sign. Nonlinear Dyn. 58(4), 687–695 (2009)

    Article  MATH  Google Scholar 

  15. Beeler, S.C., Tran, H.T., Banks, H.T.: Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl. 107(1), 1–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wernli, A., Cook, G.: Suboptimal control for the nonlinear quadratic regulator problem. Automatica 11, 75–84 (1975)

    Article  MATH  Google Scholar 

  17. Marcek, C.P., Cloutier, J.R.: Control design for the nonlinear benchmark problem via the state-dependent Riccati equation method. Int. J. Robust Nonlinear Control 8, 401–433 (1998)

    Article  Google Scholar 

  18. Friedland, B.: Advanced Control System Design. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  19. Banks, H.T., Lewis, B.M., Tran, H.T.: Nonlinear feedback controllers and compensators: a state dependent Riccati equation approach. Comput. Optim. Appl. 37, 177–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cloutier, J.R., D’Souza, C.N., Marcek, C.P.: Nonlinear regulation and nonlinear H control via the state-dependent Riccati equation technique: Part I. Theory, Part II. Examples. In: Proceedings of the First International Conference on Nonlinear Problems in Aviation and Aerospace 1996, Daytona Beach, FL, pp. 117–141 (1996)

    Google Scholar 

  21. Marcek, C.P., Cloutier, J.R.: Missile longitudinal autopilot design using the state-dependent Riccati equation method. In: Proceeding of the International Conference on Nonlinear Problems in Aviation and Aerospace 1996, pp. 387–396. Daytona, Beach, FL (1996)

    Google Scholar 

  22. Cimen, T.: State-dependent Riccati equation (SDRE): a survey. In: Proceeding of the 17th World Congress, The International Federation of Automatic Control, Seoul, Korea 2008, 6–11 July, pp. 3761–3774 (2008)

    Google Scholar 

  23. Cloutier, J.R., Zipfel, P.H.: Hypersonic guidance via the state-dependent Riccati equation control method. In: Proceeding of the IEEE Conference on Control Applications, Hawaii, HI, 1999, pp. 219–224 (1999)

    Google Scholar 

  24. Marcek, C.P., Cloutier, J.R.: Full envelope missile longitudinal autopilot design using the state-dependent Riccati equation method. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, New Orleans, LA, 1997, pp. 1697–1705 (1997)

    Google Scholar 

  25. Sun, P., Liu, K.: Missile autopilot design based on state-dependent Riccati equation. In: International Asia Conference on Information in Control, Automation and Robotics 2009, pp. 134–138 (2009)

    Chapter  Google Scholar 

  26. Hammett, K.D., Hall, C.D., Ridgely, D.B.: Controllability issues in state-dependent Riccati equation control. J. Guid. Control Dyn. 21, 767–773 (1998)

    Article  Google Scholar 

  27. Stansbery, D.T., Cloutier, J.R.: Position and attitude control of a spacecraft using the state-dependent Riccati equation technique. In: Proceedings of the American Control Conference 2000, Chicago, IL, pp. 1867–1871 (2000)

    Google Scholar 

  28. Singh, S.N., Yimm, W.: State feedback control of an aeroelastic system with structure nonlinearity. Aerosp. Sci. Technol. 7, 23–31 (2003)

    Article  MATH  Google Scholar 

  29. Tadi, M.: State-dependent Riccati equation for control of aeroelastic flutter. J. Guid. Control Dyn. 26, 914–917 (2003)

    Article  Google Scholar 

  30. Banks, H.T., Beeler, S.C., Kepler, G.M., Tran, H.T.: Reduced order modeling and control of thin film growth in an HPCVD reactor. SIAM J. Appl. Math. 62, 1251–1280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Erdem, E.B., Alleyne, A.G.: Experimental real-time SDRE control of an under actuated robot. In: Proceedings of the 40th IEEE Conference on Decision and Control 2001, Piscataway, NJ, pp. 219–224 (2001)

    Google Scholar 

  32. Erdem, E.B., Alleyne, A.G.: Design of a class of nonlinear controllers via state-dependent Riccati equation. IEEE Trans. Control Syst. Technol. 12, 2986–2991 (2004)

    Article  Google Scholar 

  33. Naik, M.S., Singh, S.N.: State-dependent Riccati equation-based robust dive plane control of AUV with control constraints. Ocean Eng. 34, 1711–1723 (2007)

    Article  Google Scholar 

  34. Steinfeldt, B.A., Tsiotras, P.: A state-dependent Riccati equation approach to atmospheric entry guidance. In: Guidance, Navigation, and Control Conference 2020, Toronto, Ontario, Canada, pp. 1–20 (2010)

    Google Scholar 

  35. Pergher, R., Bottega, V., Molter, A.: Musculetendinidiun postural stabilization control based on state-dependent. Riccati equation. In: 2nd International Conference on Engineering Optimization 2010, Lispon, Portugal, pp. 1–8 (2010)

    Google Scholar 

  36. Sayed, A.H.: A framework for state-space estimation with uncertain models. IEEE Trans. Autom. Control 46(7), 998–1013 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kirk, D.E.: Optimal Control Theory: An Introduction. Prentice Hall, Englewood Cliffs (1970)

    Google Scholar 

  38. Holet, J.M.: Discrete Gronwall lemma and applications. http://www.math.purdue.edu/

  39. Struble, R.A.: Nonlinear Differential Equations. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  40. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, M.F. Observer-based controller for discrete-time systems: a state dependent Riccati equation approach. Nonlinear Dyn 70, 693–707 (2012). https://doi.org/10.1007/s11071-012-0488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0488-x

Keywords

Navigation