Nonlinear Dynamics

, Volume 69, Issue 4, pp 1995–2007 | Cite as

An intertwining chaotic maps based image encryption scheme

  • I. Shatheesh Sam
  • P. Devaraj
  • R. S. Bhuvaneswaran
Original Paper


In this paper, a new image encryption scheme is proposed that uses intertwining chaotic maps to enhance security and key length. In the substitution process, six randomly chosen odd integers are used to permute and then XORed with the first chaotic key to shuffle and alter the image pixels. Byte substitution has also been applied and the resultant values are XORed with the second chaotic key to improve the security against the known/chosen-plain text attack and to increase nonlinearity. In the diffusion process, the pixel values are altered sequentially with various operations which include nonlinear diffusion using the first chaotic key, subdiagonal diffusion of adjacent pixels and XORing with the third chaotic key. The security and performance of the proposed image encryption technique have been analyzed using statistical analysis, sensitivity analysis, key space analysis, differential analysis, and entropy analysis. The simulation shows that a single bit of key or pixel difference of the plain-image will change almost all the pixels in the cipher-image (\(\mathrm{NPCR}>99.63\) %), and the unified average changing intensity is high (\(\mathrm{UACI}>33.43\) %). Since the entropy is found to be close to the theoretical value, we observed that the information leakage is negligible, and hence the scheme is highly secure. The experimental results show that the performance of the proposed scheme is secure and fast.


Intertwining chaotic map Permutation Byte substitution Nonlinear diffusion Subdiagonal diffusion 



This research is partially supported by the All India Council for Technical Education, New Delhi, India.


  1. 1.
    Alvarez, G., Shujun, L.: Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption. Commun. Nonlinear Sci. Numer. Simul. 14, 3743–3749 (2009) CrossRefGoogle Scholar
  2. 2.
    Chen, G.R., Mao, Y.B., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21, 749–761 (2004) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos Appl. Sci. Eng. 8(6), 1259–1284 (1998) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Guan, Z.H., Huang, F., Guan, W.: Chaos based image encryption algorithm. Phys. Lett. A 346, 153–157 (2005) MATHCrossRefGoogle Scholar
  5. 5.
    Jianquan, X., Chunhua, Y., Qing, X., Lijun, T.: An encryption algorithm based on transformed logistic map. In: IEEE Proc. Network Security, Wireless Communications and Truested Computing, pp. 111–114 (2009) Google Scholar
  6. 6.
    Li, C., Li, S., Alvarez, G., Chen, G., Lo, K.T.: Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations. Phys. Lett. A 369(1–2), 23–30 (2007) MATHCrossRefGoogle Scholar
  7. 7.
    Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects of an image encryption scheme. Image Vis. Comput. 27, 1371–1381 (2009) CrossRefGoogle Scholar
  8. 8.
    Li, C., Li, S., Lo, K.T.: Breaking a modified substitution–diffusion image cipher based on chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 16, 837–843 (2011) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lian, S., Sun, J., Wang, Z.: A block cipher based on a suitable use of chaotic standard map. Chaos Solitons Fractals 26, 117–129 (2005) MATHCrossRefGoogle Scholar
  10. 10.
    Patidar, V., Pareek, N.K., Sud, K.K.: A new substitution diffusion based image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3056–3075 (2009) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Patidar, V., Pareek, N.K., Purohit, G., Sud, K.K.: Modified substitution–diffusion image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 15(10), 2755–2765 (2010) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution-diffusion based image cipher. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1887–1892 (2010) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Sam, I.S., Devaraj, P., Bhuvaneswaran, R.S.: Chaos based image encryption scheme based on enhanced logistic map. In: LNCS Proc. ICDCIT, vol. 6536, pp. 290–300 (2011) Google Scholar
  14. 14.
    Sam, I.S., Devaraj, P., Bhuvaneswaran, R.S.: A novel image cipher based on mixed transformed logistic maps. Multimed. Tools Appl. (2012). doi: 10.1007/s11042-010-0652-6 Google Scholar
  15. 15.
    Wang, X., Teng, L.: An image blocks encryption algorithm based on spatiotemporal chaos. Nonlinear Dyn. (2011). doi: 10.1007/s11071-011-9984-7 Google Scholar
  16. 16.
    Wang, Y., Wong, K.W., Liao, X., Xiang, T., Chen, G.: A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fractals 41, 1773–1783 (2009) MATHCrossRefGoogle Scholar
  17. 17.
    Wang, X., Wang, X., Zhao, J., Zhang, Z.: Chaotic encryption algorithm based on alternant of stream cipher and block cipher. Nonlinear Dyn. 63, 587–597 (2011) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wong, K.W., Kwok, B.S.H., Law, W.S.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372, 2645–2652 (2008) MATHCrossRefGoogle Scholar
  19. 19.
    Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption. Cyber J., Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. 31–38 (2011) Google Scholar
  20. 20.
    Xiaojun, T., Minggen, C.: Image encryption with compound chaotic sequence cipher shifting dynamically. Image Vis. Comput. 26, 843–850 (2008) CrossRefGoogle Scholar
  21. 21.
    Zhang, L., Liao, X., Wang, X.: An image encryption approach based on chaotic maps. Chaos Solitons Fractals 24, 759–765 (2005) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • I. Shatheesh Sam
    • 1
  • P. Devaraj
    • 2
  • R. S. Bhuvaneswaran
    • 1
  1. 1.Ramanujan Computing Centre, College of EngineeringAnna University ChennaiGuindyIndia
  2. 2.Department of Mathematics, College of EngineeringAnna University ChennaiGuindyIndia

Personalised recommendations