Advertisement

Nonlinear Dynamics

, Volume 69, Issue 4, pp 1979–1994 | Cite as

Dynamics analysis and hybrid function projective synchronization of a new chaotic system

  • Xiangjun Wu
  • Shanzhi Li
Original Paper

Abstract

This paper introduces a novel three-dimensional autonomous chaotic system by adding a quadratic cross-product term to the first equation and modifying the state variable in the third equation of a chaotic system proposed by Cai et al. (Acta Phys. Sin. 56:6230, 2007). By means of theoretical analysis and computer simulations, some basic dynamical properties, such as Lyapunov exponent spectrum, bifurcations, equilibria, and chaotic dynamical behaviors of the new chaotic system are investigated. Furthermore, hybrid function projective synchronization (HFPS) of the new chaotic system is studied by employing three different synchronization methods, i.e., adaptive control, system coupling and active control. The proposed approaches are applied to achieve HFPS between two identical new chaotic systems with fully uncertain parameters, HFPS in coupled new chaotic systems, and HFPS between the integer-order new chaotic system and the fractional-order Lü chaotic system, respectively. Corresponding numerical simulations are provided to validate and illustrate the analytical results.

Keywords

Chaos Lyapunov exponent Bifurcation Hybrid function projective synchronization (HFPS) Uncertain parameter Fractional-order chaotic system 

Notes

Acknowledgements

This research was jointly supported by the National Natural Science Foundation of China (Grant No. 61004006), the Natural Science Foundation of Henan Province, China (Grant No. 112300410009), the Foundation for University Young Key Teacher Program of Henan Province, China (Grant No. 2011GGJS-025), and the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 2011A520004).

References

  1. 1.
    Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  2. 2.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  3. 3.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 3, 659–661 (2002) Google Scholar
  5. 5.
    Lü, J.H., Chen, G.R., Cheng, D.Z., Čelikovský, S.: Bridge the gap between the Lorenz and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002) MATHCrossRefGoogle Scholar
  6. 6.
    Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998) MATHCrossRefGoogle Scholar
  7. 7.
    Bocaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Čelikovský, S., Chen, G.: Secure synchronization of a class of chaotic systems from a nonlinear observer approach. IEEE Trans. Autom. Control 50, 76–82 (2005) CrossRefGoogle Scholar
  9. 9.
    Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54, 205–211 (2007) CrossRefGoogle Scholar
  10. 10.
    Wu, X., Li, J.: Chaos control and synchronization of a three species food chain model via Holling functional response. Int. J. Comput. Math. 87, 199–214 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Wu, X., Wang, J., Lu, J., Iu, H.H.C.: Hyperchaotic behavior in a non-autonomous unified chaotic system with continuous periodic switch. Chaos Solitons Fractals 32, 1485–1490 (2007) MATHCrossRefGoogle Scholar
  12. 12.
    Cai, G., Tan, Z., Zhou, W., Tu, W.: The dynamical analysis and control of a new chaotic system. Acta Phys. Sin. 56, 6230–6237 (2007) MATHGoogle Scholar
  13. 13.
    Zhang, J.X., Tang, W.S.: Control and synchronization for a class of new chaotic systems via linear feedback. Nonlinear Dyn. 58, 675–686 (2009) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Dadras, S., Momeni, H.R.: A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Phys. Lett. A 373, 3637–3642 (2009) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Cang, S.J., Qi, G.Y., Chen, Z.Q.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Wu, X., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61, 407–417 (2010) MATHCrossRefGoogle Scholar
  17. 17.
    Zheng, S., Dong, G., Bi, Q.: A new hyperchaotic system and its synchronization. Appl. Math. Comput. 215, 3192–3200 (2010) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Li, X., Ou, Q.: Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dyn. 65, 255–270 (2011) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, X., Zhu, H., Yao, H.: Analysis of a new three-dimensional chaotic system. Nonlinear Dyn. 67, 335–343 (2012) CrossRefGoogle Scholar
  20. 20.
    Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn. 67, 2171–2182 (2012) CrossRefGoogle Scholar
  21. 21.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zheng, Z.G., Hu, G.: Generalized synchronization versus phase synchronization. Phys. Rev. E 62, 7882–7885 (2000) CrossRefGoogle Scholar
  23. 23.
    Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4197 (1997) CrossRefGoogle Scholar
  24. 24.
    Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042–3045 (1999) CrossRefGoogle Scholar
  25. 25.
    Xu, D., Li, Z., Bishop, S.R.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. Chaos 11, 439–442 (2001) MATHCrossRefGoogle Scholar
  26. 26.
    Jia, N., Wang, T.: Chaos control and hybrid projective synchronization for a class of new chaotic systems. Comput. Math. Appl. 62, 4783–4795 (2011) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Li, Z., Xu, D.: A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22, 477–481 (2004) MATHCrossRefGoogle Scholar
  28. 28.
    Chee, C.Y., Xu, D.: Secure digital communication using controlled projective synchronization of chaos. Chaos Solitons Fractals 23, 1063–1070 (2005) MATHGoogle Scholar
  29. 29.
    Chen, Y., Li, X.: Function projective synchronization between two identical chaotic systems. Int. J. Mod. Phys. C 18, 883–888 (2007) MATHCrossRefGoogle Scholar
  30. 30.
    Du, H., Zeng, Q., Wang, C.: Function projective synchronization of different chaotic systems with uncertain parameters. Phys. Lett. A 372, 5402–5410 (2008) MATHCrossRefGoogle Scholar
  31. 31.
    Du, H., Zeng, Q., Wang, C., Ling, M.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal., Real World Appl. 11, 705–712 (2010) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Sebastian, K.S., Sabir, M.: Modified function projective synchronization of hyperchaotic systems through Open-Plus-Closed-Loop coupling. Phys. Lett. A 374, 2017–2023 (2010) MATHCrossRefGoogle Scholar
  33. 33.
    Yu, Y., Li, H.: Adaptive generalized function projective synchronization of uncertain chaotic systems. Nonlinear Anal., Real World Appl. 11, 2456–2464 (2010) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Li, Z., Zhao, X.: Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters. Nonlinear Anal., Real World Appl. 12, 2607–2615 (2011) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Du, H., Zeng, Q., Wang, C.: Modified function projective synchronization of chaotic system. Chaos Solitons Fractals 42, 2399–2404 (2009) MATHCrossRefGoogle Scholar
  36. 36.
    Wu, X., Lu, H.: Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters. Chaos Solitons Fractals 44, 802–810 (2011) CrossRefGoogle Scholar
  37. 37.
    Zhou, P., Ding, R.: Chaotic synchronization between different fractional-order chaotic systems. J. Franklin Inst. 348, 2839–2848 (2011) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal., Real World Appl. 12, 811–816 (2011) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Chen, G., Yu, X.: Chaos Control: Theory and Applications. Springer, New York (2003) MATHGoogle Scholar
  40. 40.
    Lu, J.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006) CrossRefGoogle Scholar
  41. 41.
    Matignon, D.: Stability results of fractional differential equations with applications to control processing. In: IEEESMC Proceedings, Computational Engineering in Systems and Application Multi-Conference, IMACS, Lille, France, vol. 2, pp. 963–968 (1996) Google Scholar
  42. 42.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Computing Center, Institute of Complex Intelligent Network SystemHenan UniversityKaifengChina
  2. 2.School of Computer and Information EngineeringHenan UniversityKaifengChina

Personalised recommendations