Nonlinear Dynamics

, Volume 69, Issue 3, pp 1263–1284

An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index

• Abolhassan Razminia
• Vahid Johari Majd
Original Paper

Abstract

In this paper, we consider the main problem of variational calculus when the derivatives are Riemann–Liouville-type fractional with incommensurate orders in general. As the most general form of the performance index, we consider a fractional integral form for the functional that is to be extremized. In the light of fractional calculus and fractional integration by parts, we express a generalized problem of the calculus of variations, in which the classical problem is a special case. Considering five cases of the problem (fixed, free, and dependent final time and states), we derive a necessary condition which is an extended version of the classical Euler–Lagrange equation. As another important result, we derive the necessary conditions for an optimization problem with piecewise smooth extremals where the fractional derivatives are not necessarily continuous. The latter result is valid only for the integer order for performance index. Finally, we provide some examples to clarify the effectiveness of the proposed theorems.

Keywords

Fractional calculus Fractional optimization Calculus of variations Extended Euler–Lagrange equation

References

1. 1.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
2. 2.
Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323(11), 2756–2778 (2008)
3. 3.
Razminia, A., Dizaji, A.F., Majd, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model. 55(3–4), 1106–1117 (2012)
4. 4.
Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58(11–12), 2199–2208 (2009)
5. 5.
Farges, C., Moze, M., Sabatier, J.: Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica 46(10), 1730–1734 (2010)
6. 6.
Razminia, A., Majd, V.J., Baleanu, D.: Chaotic incommensurate fractional order Rossler system: active control synchronization. Adv. Differ. Equ. 15, 1–12 (2011)
7. 7.
Mendes, R.V.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009)
8. 8.
Machado, J.A.T.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3492–3497 (2009)
9. 9.
Qin, Z., Gao, X.: Fractional Liu process with application to finance. Math. Comput. Model. 50(9–10), 1538–1543 (2009)
10. 10.
Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)
11. 11.
Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)
12. 12.
Rapaić, M.R., Jeličić, Z.D.: Optimal control of a class of fractional heat diffusion systems. Nonlinear Dyn. 62(1–2), 39–51 (2010)
13. 13.
Ingman, D., Suzdalnitsky, J.: Iteration method for equation of viscoelastic motion with fractional differential operator of damping. Comput. Methods Appl. Mech. Eng. 190(37–38), 5027–5036 (2001)
14. 14.
Podlubny, I.: Fractional Derivatives: History, Theory, Application. Utah State University, Logan (2005) Google Scholar
15. 15.
Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)
16. 16.
El-Nabulsi, R.A., Torres, D.F.M.: Fractional actionlike variational problems. J. Math. Phys. 49(5), 053521 (2008), 7 pp
17. 17.
Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)
18. 18.
Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)
19. 19.
Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)
20. 20.
El-Nabulsi, R.A.: A fractional approach to non-conservative Lagrangian dynamics. Fizika A 14(4), 289–298 (2005) Google Scholar
21. 21.
Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)
22. 22.
Yousefi, S.A., Dehghan, M., Lotfi, A.: Generalized Euler–Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62(3), 987–995 (2011)
23. 23.
Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational principles with delay within Caputo derivatives. Rep. Math. Phys. 65(1), 17–28 (2010)
24. 24.
Youssef, H.M., Al-Lehaibi, E.A.: Variational principle of fractional order generalized thermoelasticity. Appl. Math. Lett. 23(10), 1183–1187 (2010)
25. 25.
Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217(3), 1023–1033 (2010)
26. 26.
Malinowska, A.B., Torres, D.F.M.: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59(9), 3110–3116 (2010)
27. 27.
Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)
28. 28.
Machado, J.A.T.: Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4, 47–68 (2001)
29. 29.
Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13(9–10), 1269–1281 (2007)
30. 30.
Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–2), 323–337 (2004)
31. 31.
Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)
32. 32.
Agrawal, O.P.: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59(5), 1852–1864 (2010)
33. 33.
Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53(1–2), 67–74 (2008)
34. 34.
Almeida, R., Torres, D.F.M.: Leitmann’s direct method for fractional optimization problems. Appl. Math. Comput. 217(3), 956–962 (2010)
35. 35.
Almeida, R., Malinowska, A.B., Torres, D.F.M.: A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51(3), 033503 (2010), 12 pp
36. 36.
Odzijewicz, T., Torres, D.F.M.: Fractional calculus of variations for double integrals. Balk. J. Geom. Appl. 16(2), 102–113 (2011)
37. 37.
Almeida, R., Torres, D.F.M.: Isoperimetric problems of the calculus of variations with fractional derivatives. Acta Math. Sci. Ser. B 32(2), 619–630 (2012) Google Scholar
38. 38.
Mozyrska, D., Torres, D.F.M.: Modified optimal energy and initial memory of fractional continuous-time linear systems. Signal Process. 91(3), 379–385 (2011)
39. 39.
Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22(12), 1816–1820 (2009)
40. 40.
Almeida, R., Torres, D.F.M.: Fractional variational calculus for non-differentiable functions. Comput. Math. Appl. 61(10), 3097–3104 (2011)
41. 41.
Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56(10–11), 1087–1092 (2006)
42. 42.
Baleanu, D., Trujillu, J.J.: A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1111–1115 (2010)
43. 43.
Özdemir, N., Karadeniz, D., Iskender, B.B.: Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A 373(2), 221–226 (2009)
44. 44.
Filatova, D., Grzywaczewski, M., Osmolovskii, N.: Optimal control problem with an integral equation as the control object. Nonlinear Anal. 72(3–4), 1235–1246 (2010)
45. 45.
Tricaud, C., Chen, Y.Q.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59(5), 1644–1655 (2010)
46. 46.
Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58(1–2), 385–391 (2009)
47. 47.
El-Nabulsi, R.A.: A fractional approach of nonconservative Lagrangian dynamics. Fizika A 14(4), 289–298 (2005) Google Scholar
48. 48.
Kalia, R.N., Srivastava, H.M.: Fractional calculus and its applications involving functions of several variables. Appl. Math. Lett. 12(5), 19–23 (1999)
49. 49.
Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)
50. 50.
Oldham, K.B., Spanier, J.: The Fractional Calculus. Mathematics in Science and Engineering. Academic Press, San Diego (1974) Google Scholar
51. 51.
52. 52.
Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific, Singapore (2005) Google Scholar
53. 53.
Folland, G.B.: Real Analysis, Modern Techniques and Their Applications. Wiley, New York (1999)
54. 54.
Podlubny, I., Chen, Y.Q.: Adjoint fractional differential expressions and operators. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007, Las Vegas, NV, September 4–7 (2007) Google Scholar
55. 55.
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
56. 56.
El-Nabulsi, R.A., Torres, D.F.M.: Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β). Math. Methods Appl. Sci. 30(15), 1931–1939 (2007)
57. 57.
Pierre, D.A.: Optimization Theory with Applications. Dover, New York (1969)
58. 58.
Atanacković, T.M., Konjik, S., Pilipović, S.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A, Math. Theory 41(9) (2008). doi:
59. 59.
Van Brunt, B.: The Calculus of Variations. Universitext. Springer, New York (2004) Google Scholar
60. 60.
Kirk, D.E.: Optimal Control Theory, An Introduction. Prentice-Hall, Englewood Cliffs (2004) Google Scholar
61. 61.
Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dyn. 52(4), 331–335 (2008)
62. 62.
Almeida, R., Pooseh, S., Torres, D.F.M.: Fractional variational problems depending on indefinite integrals. Nonlinear Anal. 75(3), 1009–1025 (2012)
63. 63.
Calderón, A.J., Vinagre, B.M., Feliu, V.: Fractional order control strategies for power electronic buck converters. Signal Process. 86(10), 2803–2819 (2006)