Nonlinear Dynamics

, Volume 67, Issue 1, pp 373–383 | Cite as

Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes

  • R. Ansari
  • M. Hemmatnezhad
Original Paper


The large-amplitude free vibration analysis of double-walled carbon nanotubes embedded in an elastic medium is investigated by means of a finite element formulation. A double-beam model is utilized in which the governing equations of layers are coupled with each other via the van der Waals interlayer forces. Von-Karman type nonlinear strain-displacement relationships are employed where the ends of the nanotube are constrained to move axially. The amplitude-frequency response curves for large-amplitude free vibrations of single-walled and double-walled carbon nanotubes with arbitrary boundary conditions are graphically illustrated. The effects of material constant of the surrounding elastic medium and the geometric parameters on the vibration characteristics are investigated. For a double-walled carbon nanotube with different boundary conditions between inner and outer tubes, the nonlinear frequencies are obtained apparently for the first time. Comparison of the results with those from the open literature is made for the amplitude-frequency curves where possible. This comparison illustrates that the present scheme yields very accurate results in predicting the nonlinear frequencies.


Large-amplitude vibration Carbon nanotubes Frequency response Boundary conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, S.: Helica microtubes of graphitic carbon. Nature 354, 56 (1991) CrossRefGoogle Scholar
  2. 2.
    Avouris, P., Appenzeller, J., Martel, R., Wind, S.J.: Carbon nanotube electronics. Proc. IEEE 91(11), 1772–1784 (2003) CrossRefGoogle Scholar
  3. 3.
    Tsukagoshi, K., Yoneya, N., Uryu, S., Aoyagi, Y., Kanda, A., Ootuka, Y., Alphenaar, B.W.: Carbon nanotube devices for electronics. Physica B 323(1–4), 107–114 (2002) CrossRefGoogle Scholar
  4. 4.
    Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002) CrossRefGoogle Scholar
  5. 5.
    Choi, W.B., Bae, E., Kang, D., Chae, S., Cheong, B., Ko, J.: Aligned carbon nanotubes for nanoelectronics. Nanotechnology 15, 512–516 (2004) CrossRefGoogle Scholar
  6. 6.
    Baughman, R.H., et al.: Carbon nanotubes actuators. Science 284, 1340–1344 (1999) CrossRefGoogle Scholar
  7. 7.
    Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000) CrossRefGoogle Scholar
  8. 8.
    Yang, W., Ma, X.L., Wang, H.T., Hong, W.: The advancement of nanomechanics (continued). Adv. Mech. 33(2), 175–185 (2003) Google Scholar
  9. 9.
    Lau, K.T., Chipara, M., Ling, H.Y., Hui, D.: On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites B 35, 95–101 (2004) CrossRefGoogle Scholar
  10. 10.
    Ru, C.Q.: Elastic models for carbon nanotubes. In: Encyclopedia of Nanoscience and Nanotechnology, vol. X, pp. 1–14 (2003) Google Scholar
  11. 11.
    Yang, W., Ma, X.L., Wang, H.T., Hong, W.: The advancement of nanomechanics (continued). Adv. Mech. 33(2), 175–185 (2003) Google Scholar
  12. 12.
    Iilima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotube. Chem. Phys. 104, 2089 (1996) Google Scholar
  13. 13.
    Wong, E.W., Sheehan, P.W., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997) CrossRefGoogle Scholar
  14. 14.
    Salvetal, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Stockli, T., Burnham, N.A., Forro, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944 (1999) CrossRefGoogle Scholar
  15. 15.
    Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Lett. A 76, 14 (2000) Google Scholar
  16. 16.
    Lourie, O., Cox, D.M., Wagner, H.D.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638 (1998) CrossRefGoogle Scholar
  17. 17.
    Srivastava, D., Menon, M., Cho, K.: Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83, 2973 (1999) CrossRefGoogle Scholar
  18. 18.
    Ozaki, T., Iwasa, Y., Mitani, T.: Stiffness of single-walled carbon nanotubes under large strain. Phys. Rev. Lett. 84, 1712 (2000) CrossRefGoogle Scholar
  19. 19.
    Ru, C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J. Appl. Phys. 87, 1712–1715 (2000) CrossRefGoogle Scholar
  20. 20.
    Ru, C.Q.: Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62, 9973–9976 (2000) CrossRefGoogle Scholar
  21. 21.
    Ru, C.Q.: Elastic buckling of single-walled carbon nanotubes ropes under high pressure. Phys. Rev. B 62, 10405–10408 (2000) CrossRefGoogle Scholar
  22. 22.
    Li, R., Kardomateas, G.A.: Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. ASME J. Appl. Mech. 74, 399–405 (2007) MATHCrossRefGoogle Scholar
  23. 23.
    Govindjee, S., Sackman, J.L.: On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun. 110, 227–230 (1999) CrossRefGoogle Scholar
  24. 24.
    Poncharal, P., Wang, Z.L., Ugarte, D., De Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999) CrossRefGoogle Scholar
  25. 25.
    Ru, C.Q.: Column buckling of multiwall carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962–16967 (2000) CrossRefGoogle Scholar
  26. 26.
    Yoon, J., Ru, C.Q., Mioduchowski, A.: Non-coaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev. B 66, 233402-14 (2002) Google Scholar
  27. 27.
    Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration of an embedded multiwalled carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003) CrossRefGoogle Scholar
  28. 28.
    Yoon, J., Ru, C.Q., Mioduchowski, A.: Timoshenko-beam effects on transverse wave propagation in carbon nanotubes. Composites B 35, 87–93 (2004) CrossRefGoogle Scholar
  29. 29.
    Yoon, J., Ru, C.Q., Mioduchowski, A.: Terahertz vibration of short carbon nanotubes modeled as Timoshenko-beams. ASME J. Appl. Mech. 72, 10–17 (2005) MATHCrossRefGoogle Scholar
  30. 30.
    Hsu, J.C., Chang, R.P., Chang, W.J.: Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory. Phys. Lett. A 372, 2757–2759 (2008) MATHCrossRefGoogle Scholar
  31. 31.
    Wang, L., Ni, Q.: On vibration and instability of carbon nanotubes conveying fluid. Comput. Mater. Sci. 43, 399–402 (2008) CrossRefGoogle Scholar
  32. 32.
    Gibson, R.F., Ayorinde, E.O., Wen, Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007) CrossRefGoogle Scholar
  33. 33.
    Fu, Y.M., Hong, J.W., Wang, X.Q.: Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vib. 296, 746–756 (2006) CrossRefGoogle Scholar
  34. 34.
    Ansari, R., Hemmatnezhad, M., Ramezannezhad, H.: Application of HPM to the nonlinear vibrations of multiwalled carbon nanotubes. Numer. Methods Partial Differ. Equ. 26, 490–500 (2010) MathSciNetMATHGoogle Scholar
  35. 35.
    Singh, G., Raju, K.K., Venkateswara Rao, G., Iyenger, N.G.R.: Non-linear vibrations of simply supported rectangular cross-ply plates. J. Sound Vib. 142, 213–226 (1990) CrossRefGoogle Scholar
  36. 36.
    Singh, G., Venkateswara Rao, G., Iyenger, N.G.R.: Reinvestigation of large amplitude free vibrations of beams using finite elements. J. Sound Vib. 143(2), 351–355 (1990) CrossRefGoogle Scholar
  37. 37.
    Sundaresan, P., Singh, G., Venkateswara Rao, G.: A Simple approach to investigate vibratory behavior of thermally stressed laminated structures. J. Sound Vib. 219(4), 603–618 (1999) CrossRefGoogle Scholar
  38. 38.
    Xu, K.Y., Aifantis, E.C., Yan, Y.H.: Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes. ASME J. Appl. Mech. 75, 021013-9 (2008) Google Scholar
  39. 39.
    Lanir, Y., Fung, Y.C.B.: Fiber composite columns under compressions. J. Compos. Mater. 6, 387–401 (1972) Google Scholar
  40. 40.
    Hahn, H.T., Williams, J.G.: Compression failure mechanisms in unidirectional composites. Compos. Mater.-Test. Des. 7, 115–139 (1984) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations