Advertisement

Nonlinear Dynamics

, Volume 67, Issue 1, pp 335–343 | Cite as

Analysis of a new three-dimensional chaotic system

  • Xuebing Zhang
  • Honglan Zhu
  • Hongxing Yao
Original Paper

Abstract

In this paper, a new three-dimensional autonomous chaotic system is presented. There are three control parameters and three different nonlinear terms in the governed equations. Basic dynamic properties of the new system are investigated via theoretical analysis and numerical simulation. The nonlinear characteristic of the new three-dimensional autonomous system versus the control parameters is illustrated by bifurcation diagram, Lyapunov-exponent spectrum, phase portraits, etc.

Keywords

New chaotic system Lyapunov-exponent spectrum Bifurcation Phase portraits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  2. 2.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  3. 3.
    Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33, 1073–1118 (1986) Google Scholar
  4. 4.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Lu, J.H., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Qi, G., Chen, G., Du, S.: Analysis of a new chaotic system. Physica A 352, 295–308 (2005) CrossRefGoogle Scholar
  7. 7.
    Murali, K., Lakshmanan, M.: Drive-response scenario of chaos synchronization in identical nonlinear system. Phys. Rev. E 49, 4482–4485 (1994) CrossRefGoogle Scholar
  8. 8.
    Murali, K., Lakshmanan, M.: Secure communication using a compound signal from generalized synchronizable chaotic system. Phys. Lett. A 241, 303–10 (1998) MATHCrossRefGoogle Scholar
  9. 9.
    Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 40, 626–633 (1993) CrossRefGoogle Scholar
  10. 10.
    Morgül, Ö., Solak, E., Akgül, M.: Observer based chaotic message transmission. Int. J. Bifurc. Chaos 13, 1003–17 (2002) Google Scholar
  11. 11.
    Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2, 81–130 (2004) Google Scholar
  12. 12.
    Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE. Trans. Circuits Syst. 38, 453–456 (1991) CrossRefGoogle Scholar
  13. 13.
    Yassen, M.T.: Adaptive control and synchronization of a modified Chua’s circuit system. Appl. Math. Comput. 135, 113–28 (2003) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Yassen, M.T.: Chaos synchronization between two different chaotic system using active control. Chaos Solitons Fractals 23, 131–40 (2005) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Wang, C., Ge, S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos Solitons Fractals 12, 1199–206 (2001) MATHCrossRefGoogle Scholar
  16. 16.
    Li, G.-H.: Synchronization of chaotic systems with parameter driven by a chaotic signal. Chaos Solitons Fractals 26, 1485–9 (2005) MATHCrossRefGoogle Scholar
  17. 17.
    Park, J.H.: A note on synchronization between two different chaotic systems. Chaos Solitons Fractals 40, 1538–1544 (2009) MATHCrossRefGoogle Scholar
  18. 18.
    Park, J.H.: Adaptive H synchronization of unified chaotic systems. Mod. Phys. Lett. B 23, 1157–1169 (2009) MATHCrossRefGoogle Scholar
  19. 19.
    Rucklidge, A.M.: Chaos in models of double convection. J. Fluid Mech. 237, 209–229 (1992) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Čelikovský, S., Chen, G.: On a generalized Lorenz canonical form of chaotic systems. Int. J. Bifurc. Chaos 12, 1789–1812 (2002) MATHCrossRefGoogle Scholar
  21. 21.
    Čelikovský, S., Chen, G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona, Spain (2002), in CD ROM Google Scholar
  22. 22.
    Čelikovský, S., Chen, G.: On the generalized Lorenz canonical form. Chaos Solitons Fractals 26, 1271–1276 (2005) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Basic CourseHuaian College of Information TechnologyHuaianP.R. China
  2. 2.Faculty of Science Mathematics and PhysicsHuaiyin Institute of TechnologyHuaianP.R. China
  3. 3.Faculty of ScienceJiangsu UniversityZhenjiangP.R. China

Personalised recommendations