Advertisement

Nonlinear Dynamics

, Volume 67, Issue 1, pp 251–262 | Cite as

Order reduction and nonlinear behaviors of a continuous rotor system

  • Qian Ding
  • Kunpeng Zhang
Original Paper

Abstract

An isotropic flexible shaft, acted by nonlinear fluid-induced forces generated from oil-lubricated journal bearings and hydrodynamic seal, is considered in this paper. Dimension reductions of the rotor system were carried out by both the standard Galerkin method and the nonlinear Galerkin method. Numerical simulations provide bifurcation diagrams, spectrum cascade, orbits of the disk center and Poincaré maps, to demonstrate the dynamical behaviors of the system. The results reveal transitions, or bifurcations, of the rotor whirl from being synchronous to non-synchronous as the unstable speed is exceeded. The non-synchronous oil/seal whirl is a quasi-periodic motion. In the regime of quasi-periodic motion, the “windows” of multi-periodic motion were found. The investigation shows that the nonlinear Galerkin method has an advantage over the standard one with the same order of truncations, because the influences of higher modes are considered by the former.

Keywords

Nonlinear vibration Continuous rotor system Standard Galerkin method Nonlinear Galerkin method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shaw, J., Shaw, S.: The effects of unbalance on oil whirl. Nonlinear Dyn. 1, 293–311 (1990) CrossRefGoogle Scholar
  2. 2.
    Muszynska, A.: Whirl and whip—Rotor/bearing stability problems. J. Sound Vib. 110, 443–462 (1986) CrossRefGoogle Scholar
  3. 3.
    Childs, D.W.: Dynamic analysis of turbulent annular seals based on Hirs’ lubrication. J. Lubr. Technol. 105, 429–439 (1983) CrossRefGoogle Scholar
  4. 4.
    San Andres, L.: Dynamic force and moment coefficients for short length annular seals. J. Tribol. 115, 61–70 (1993) CrossRefGoogle Scholar
  5. 5.
    Muszynska, A.: Improvements in lightly loaded rotor/bearing and rotor/seal models. ASME J. Vib. Acoust. 110, 129–136 (1988) Google Scholar
  6. 6.
    Muszynska, A., Bently, D.E.: Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. J. Sound Vib. 143, 103–124 (1990) CrossRefGoogle Scholar
  7. 7.
    Muszynska, A., Bently, D.E.: Anti-swirl arrangements prevent rotor/seal instability. ASME J. Vib. Acoust. 111, 156–162 (1989) Google Scholar
  8. 8.
    Ding, Q., Cooper, J.E., Leung, A.Y.T.: Hopf bifurcation analysis of a rotor/seal system. J. Sound Vib. 252, 817–833 (2002) CrossRefGoogle Scholar
  9. 9.
    Hua, J., Swaddiwudhipong, S., Liu, Z.S., Xu, Q.Y.: Numerical analysis of nonlinear rotor–seal system. J. Sound Vib. 283, 525–542 (2005) CrossRefGoogle Scholar
  10. 10.
    Cheng, M., Meng, G., Jing, J.: Non-linear dynamics of a rotor–bearing–seal system. Arch. Appl. Mech. 76, 215–227 (2006) MATHCrossRefGoogle Scholar
  11. 11.
    Shen, X., Zhao, M.: Effect of the seal force on nonlinear dynamics and stability of the rotor–bearing–seal system. J. Vib. Control 15, 197–217 (2009) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ding, Q., Leung, A.Y.T.: Nonstationary processes of rotor/bearing system in bifurcation. J. Sound Vib. 268, 33–48 (2003) CrossRefGoogle Scholar
  13. 13.
    Ding, Q., Leung, A.Y.T.: Experimental study on nonlinear dynamic behaviors of a multi-bearing flexible rotor system. ASME J. Vib. Acoust. 127, 408–415 (2005) CrossRefGoogle Scholar
  14. 14.
    Younesian, D., Esmailzadeh, E.: Non-linear vibration of variable speed rotating viscoelastic beams. Nonlinear Dyn. 60, 193–205 (2010) MATHCrossRefGoogle Scholar
  15. 15.
    Ansari, M., Esmailzadeh, E., Younesian, D.: Internal–external resonance of beams on non-linear viscoelastic foundation traversed by moving load. Nonlinear Dyn. 61, 163–182 (2010) MATHCrossRefGoogle Scholar
  16. 16.
    Rega, G., Troger, H.: Dimension reduction of dynamical systems: methods, models, applications. Nonlinear Dyn. 4, 1–15 (2005) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26, 1139–1157 (1989) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Matthies, H.G., Meyer, M.: Nonlinear Galerkin methods for the model reduction of nonlinear dynamical systems. Comput. Struct. 81, 1277–1286 (2003) CrossRefGoogle Scholar
  19. 19.
    Steindl, A., Troger, H.: Methods for dimension reduction and their application in nonlinear dynamics. Int. J. Solids Struct. 38, 2131–2147 (2001) MATHCrossRefGoogle Scholar
  20. 20.
    Zhang, W.: A general mathematical model of nonlinear non-steady oil film force in dynamic load bearing. In: Wang, D.J., Qu, G.J. (eds.) Advances in Engineering Mechanics, pp. 158–167. Peking University Press, Beijing (1998) Google Scholar
  21. 21.
    Zhang, W., Xu, X.F.: Modeling of nonlinear oil-film force acting on a journal with unsteady and nonlinear instability analysis under the model. Int. J. Nonlinear Sci. Numer. Simul. 1, 179–186 (2000) MATHCrossRefGoogle Scholar
  22. 22.
    Park, S., Chung, W.K., Youm, Y., Lee, J.W.: Natural frequencies and open-loop responses of an elastic beam fixed on a moving cart and carrying an intermediate lumped mass. J. Sound Vib. 230, 591–615 (2000) CrossRefGoogle Scholar
  23. 23.
    Low, K.H.: On the methods to derive frequency equations of beams carrying multiple masses. Int. J. Mech. Sci. 43, 871–881 (2001) MATHCrossRefGoogle Scholar
  24. 24.
    Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. Math. Model. Numer. Anal. 22, 93–114 (1988) MathSciNetMATHGoogle Scholar
  25. 25.
    Ding, Q., Leung, A.Y.T., Cooper, J.E.: Dynamic analysis of a self-excited system with hysteretic non-linearity. J. Sound Vib. 245, 151–164 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Nonlinear Dynamics and Chaos ControlTianjinChina

Personalised recommendations