Skip to main content
Log in

A modified incremental harmonic balance method for rotary periodic motions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The determination of periodic solutions is an essential step in the study of dynamic systems. If some of the generalized coordinates describing the configuration of a system are angular positions relative to certain reference axes, the associated periodic motions divide into two types: oscillatory and rotary periodic motions. For an oscillatory periodic motion, all the generalized coordinates are periodic in time. On the other hand, for a rotary periodic motion, some angular coordinates may have unbounded magnitude due to the persistent circulation about their pivots. In this case, although the behaviour of the system is periodic physically, those angular coordinates are not periodic in time. Although various effective methods have been developed for the determination of oscillatory periodic motion, the rotary periodic motion can only be determined by brute force integration. In this paper, the incremental harmonic balance (IHB) method is modified so that rotary periodic motions can be determined as well as oscillatory periodic motions in a unified formulation. This modified IHB method is applied to a practical device, a rotating disk equipped with a ball-type balancer, to show its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Series in Nonlinear Science. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  2. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Appl. Mech. 48(4), 959–964 (1981)

    Article  MATH  Google Scholar 

  3. Lau, S.L., Cheung, Y.K., Wu, S.Y.: A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. J. Appl. Mech. 49(4), 849–853 (1982)

    Article  MATH  Google Scholar 

  4. Cheung, Y.K., Lau, S.L.: Incremental time-space finite strip method for non-linear structural vibrations. Earthquake Eng. Struct. Dyn. 10(2), 239–253 (1982)

    Article  Google Scholar 

  5. Lau, S.L., Cheung, Y.K., Wu, S.Y.: Nonlinear vibration of thin elastic plates. Part 2: Internal resonance by amplitude-incremental finite element. J. Appl. Mech. 51(4), 845–851 (1984)

    Article  Google Scholar 

  6. Pierre, C., Dowell, E.H.: A study of dynamic instability of plates by an extended incremental harmonic-balance method. J. Appl. Mech. 52(3), 693–698 (1985)

    Article  MATH  Google Scholar 

  7. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic-balance method to cubic nonlinearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  MathSciNet  Google Scholar 

  8. Yuen, S.W., Lau, S.L.: Effects of inplane load on nonlinear panel flutter by incremental harmonic-balance method. AIAA J. 29(9), 1472–1479 (1991)

    Article  Google Scholar 

  9. Leung, A.Y.T., Chui, S.K.: Nonlinear vibration of coupled duffing oscillators by an improved incremental harmonic-balance method. J. Sound Vib. 181(4), 619–633 (1995)

    Article  MathSciNet  Google Scholar 

  10. Raghothama, A., Narayanan, S.: Non-linear dynamics of a two-dimensional airfoil by incremental harmonic balance method. J. Sound Vib. 226(3), 493–517 (1999)

    Article  Google Scholar 

  11. Chen, S.H., Cheung, Y.K., Xing, H.X.: Nonlinear vibration of plane structures by finite element and incremental harmonic balance method. Nonlinear Dyn. 26(1), 87–104 (2001)

    Article  MATH  Google Scholar 

  12. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281(3–5), 611–626 (2005). doi:10.1016/j.jsv.2004.01.012. ISSN 0022-460X

    Article  Google Scholar 

  13. Zheng, G., Ko, J.M., Ni, Y.Q.: Super-harmonic and internal resonances of a suspended cable with nearly commensurable natural frequencies. Nonlinear Dyn. 30(1), 55–70 (2002)

    Article  MATH  Google Scholar 

  14. Raghothama, A., Narayanan, S.: Periodic response and chaos in nonlinear systems with parametric excitation and time delay. Nonlinear Dyn. 27(4), 341–365 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lau, S.L., Cheung, Y.K., Wu, S.Y.: Incremental harmonic-balance method with multiple time scales for aperiodic vibration of non-linear systems. J. Appl. Mech. 50(4A), 871–876 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pierre, C., Ferri, A.A., Dowell, E.H.: Multi-harmonic analysis of dry friction damped systems using an incremental harmonic-balance method. J. Appl. Mech. 52(4), 958–964 (1985)

    Article  MATH  Google Scholar 

  17. Zhou, J.X., Zhang, L.: Incremental harmonic balance method for predicting amplitudes of a multi-d.O.F. Non-linear wheel shimmy system with combined coulomb and quadratic damping. J. Sound Vib. 279(1–2), 403–416 (2005). doi:10.1016/j.jsv.2003.11.005. ISSN 0022-460X

    Article  Google Scholar 

  18. Wong, C.W., Zhang, W.S., Lau, S.L.: Periodic forced vibration of unsymmetrical piecewise-linear systems by incremental harmonic-balance method. J. Sound Vib. 149(1), 91–105 (1991)

    Article  Google Scholar 

  19. Lau, S.L., Zhang, W.S.: Nonlinear vibrations of piecewise-linear systems by incremental harmonic-balance method. J. Appl. Mech. 59(1), 153–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pun, D., Liu, Y.B.: On the design of the piecewise linear vibration absorber. Nonlinear Dyn. 22(4), 393–413 (2000)

    Article  MATH  Google Scholar 

  21. Lau, S.L., Yuen, S.W.: The Hopf-bifurcation and limit-cycle by the incremental harmonic-balance method. Comput. Methods Appl. Mech. Eng. 91(1–3), 1109–1121 (1991)

    Article  MathSciNet  Google Scholar 

  22. Raghothama, A., Narayanan, S.: Bifurcation and chaos in escape equation model by incremental harmonic balancing. Chaos Solitons Fractals 11(9), 1349–1363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, J.H., Lin, K.C., Chen, S.H., Sze, K.Y.: Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method. Nonlinear Dyn. 52(4), 403–414 (2008). doi:10.1007/s11071-007-9289-z. ISSN 0924-090X

    Article  MATH  Google Scholar 

  24. Lee, J., Moorham, W.K.V.: Analytical and experimental analysis of a self-compensating dynamic balancer in a rotating mechanism. J. Dyn. Syst. Meas. Control 118, 468–475 (1996)

    Article  MATH  Google Scholar 

  25. Kim, W., Chung, J.: Performance of automatic ball balancers on optical disc drives. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 216(11), 1071–1080 (2002)

    Article  Google Scholar 

  26. Chao, P.C.P., Sung, C.-K., Wang, C.-C.: Dynamic analysis of the optical disk drives equipped with an automatic ball balancer with consideration of torsional motions. J. Appl. Mech. 72(6), 826–842 (2005)

    Article  MATH  Google Scholar 

  27. Kim, W., Lee, D.-J., Chung, J.: Three-dimensional modelling and dynamic analysis of an automatic ball balancer in an optical disk drive. J. Sound Vib. 285(3), 547–569 (2005)

    Article  Google Scholar 

  28. Chao, P.C.P., Sung, C.K., Wu, S.T., Huang, J.S.: Nonplanar modeling and experimental validation of a spindle-disk system equipped with an automatic balancer system in optical disk drives. Microsyst. Technol. 13(8–10), 1227–1239 (2007)

    Article  Google Scholar 

  29. Chung, J., Ro, D.S.: Dynamic analysis of an automatic dynamic balancer for rotating mechanisms. J. Sound Vib. 228(5), 1035–1056 (1999)

    Article  Google Scholar 

  30. Kang, J.R., Chao, C.P., Huang, C.L., Sung, C.K.: The dynamics of a ball-type balancer system equipped with a pair of free-moving balancing masses. J. Vib. Acoust. 123(4), 456–465 (2001)

    Article  Google Scholar 

  31. Chung, J., Jang, I.: Dynamic response and stability analysis of an automatic ball balancer for a flexible rotor. J. Sound Vib. 259(1), 31–43 (2003)

    Article  MathSciNet  Google Scholar 

  32. Chao, P.C.P., Sung, C.-K., Leu, H.-C.: Effects of rolling friction of the balancing balls on the automatic ball balancer for optical disk drives. J. Tribol. 127(4), 845–856 (2005)

    Article  Google Scholar 

  33. Lu, C.J., Wang, M.C., Huang, S.H.: Analytical study of the stability of a two-ball automatic balancer. Mech. Syst. Signal Process. 23(3), 884–896 (2009). doi:10.1016/j.ymssp.2008.06.008

    Article  Google Scholar 

  34. Green, K., Champneys, A.R., Friswell, M.I.: Analysis of the transient response of an automatic dynamic balancer for eccentric rotors. Int. J. Mech. Sci. 48(3), 274–293 (2006)

    Article  MATH  Google Scholar 

  35. Green, K., Champneys, A.R., Lieven, N.J.: Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors. J. Sound Vib. 291(3–5), 861–881 (2006)

    Article  Google Scholar 

  36. Rajalingham, C., Bhat, R.B., Rakheja, S.: Automatic balancing of flexible vertical rotors using a guided ball. Int. J. Mech. Sci. 40(9), 825–834 (1998)

    Article  MATH  Google Scholar 

  37. Huang, W.Y., Chao, C.P., Kang, J.R., Sung, C.K.: The application of ball-type balancers for radial vibration reduction of high-speed optic disk drives. J. Sound Vib. 250(3), 415–430 (2002)

    Article  Google Scholar 

  38. Lu, C.J.: Stability analysis of a single-ball automatic balancer. J. Vib. Acoust. 128(1), 122–125 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Jen Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, CJ., Lin, YM. A modified incremental harmonic balance method for rotary periodic motions. Nonlinear Dyn 66, 781–788 (2011). https://doi.org/10.1007/s11071-011-9950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9950-4

Keywords

Navigation