Nonlinear Dynamics

, Volume 69, Issue 3, pp 837–845 | Cite as

Revealing the process of edge-based-attack cascading failures

  • Shudong Li
  • Lixiang Li
  • Yixian Yang
  • Qun Luo
Original Paper


In this paper, concerned with the highest-load attack (HL) and random attack (RA) on one edge or one node, we model the cascading dynamics in scale-free networks (SF), WS small-world networks (WS) and ER random networks (ER). How long the cascade propagation in networks will persist and what features the avalanche edges or nodes at each time step will show in cascading failures are questions investigated. We find that, under both HL and RA attack, the persistent time of cascade propagation in SF networks is always longer than in ER and WS networks (except p=0.1). Under HL attack, there exists a threshold α c of tolerance parameter α making the cascading propagation in SF and WS networks longest-running. Moreover, under HL attack, the avalanche edges and nodes in WS and ER networks always reach a peak over a period of time, while the SF network shows similar characteristics only in some field of α. However, under RA attack, in the case of big α, most of the avalanche edges and nodes in SF, WS and ER networks always occur at the beginning of the cascading failures. Furthermore, under node-targeted attack, SF shows to be more vulnerable than under edge-targeted attack and most of avalanche nodes occur at the beginning of failures. The results remind us to grasp the rhythm of controlling disasters according to the features of cascading failures in different networks.


Complex networks Cascading failures Random attack Highest-load attack Edge-based Node-based 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93, 098701 (2004) CrossRefGoogle Scholar
  2. 2.
    Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002) CrossRefGoogle Scholar
  3. 3.
    Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001) CrossRefGoogle Scholar
  4. 4.
    Goh, K.-I., Kahng, B., Kim, D.: Fluctuation-driven dynamics of the Internet topology. Phys. Rev. Lett. 88, 108701 (2002) CrossRefGoogle Scholar
  5. 5.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastructures 4, 63–79 (2008) CrossRefGoogle Scholar
  6. 6.
    Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000) CrossRefGoogle Scholar
  7. 7.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000) CrossRefGoogle Scholar
  8. 8.
    Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002) CrossRefGoogle Scholar
  9. 9.
    Holme, P., Kim, B.J.: Attack vulnerability of complex networks. Phys. Rev. E 65, 066109 (2002) CrossRefGoogle Scholar
  10. 10.
    Santiago, A., Benito, R.M.: Robustness of heterogeneous complex networks. Physica A 388, 2234–2242 (2009) CrossRefGoogle Scholar
  11. 11.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002) CrossRefGoogle Scholar
  12. 12.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010) CrossRefGoogle Scholar
  13. 13.
    Buldyrev, S.V., Shere, N., Cwilich, G.A.: Interdependent networks with correlated degrees of mutually dependent nodes. Phys. Rev. E 83, 016112 (2011) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guo, Q., Li, L.-X., Chen, Y.-H., Yang, Y.-X., Niu, X.-X.: Modeling dynamics of disaster spreading in community networks. Nonlinear Dyn. 64, 157–165 (2010) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gabrielov, A., Keilis-Borok, V., Zaliapin, I., Newman, W.I.: Critical transitions in colliding cascades. Phys. Rev. E 62, 237 (2000) CrossRefGoogle Scholar
  16. 16.
    Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Phys. Rev. Lett. 100, 218701 (2008) CrossRefGoogle Scholar
  17. 17.
    Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004) CrossRefGoogle Scholar
  18. 18.
    Wang, W.X., Chen, G.: Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E 77, 026101 (2008) CrossRefGoogle Scholar
  19. 19.
    Wang, J., Liu, Y.-H., Jiao, Y., Hu, H.-Y.: Cascading dynamics in congested complex networks. Eur. Phys. J. B 67, 95–100 (2009) CrossRefGoogle Scholar
  20. 20.
    Wang, W.X., Lai, Y.C.: Abnormal cascading on complex networks. Phys. Rev. E 80, 036109 (2009) CrossRefGoogle Scholar
  21. 21.
    Mirzasoleiman, B., Babaei, M., Jalili, M., Safari, M.: Cascaded failures in weighted networks. Phys. Rev. E 84, 046114 (2011) CrossRefGoogle Scholar
  22. 22.
    Boccaletti, S., Buldú, J., Criado, R., Flores, J., Latora, V., Pello, J., Romance, M.: Multiscale vulnerability of complex networks. Chaos 17, 043110 (2007) CrossRefGoogle Scholar
  23. 23.
    Mishkovski, I., Biey, M., Kocarev, L.: Vulnerability of complex networks. Commun. Nonlinear Sci. Numer. Simul. 16, 341–349 (2011) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ouyang, M., Liu, Y., Mao, Z.J., Yu, M.H., Qi, F.: A methodological approach to analyze vulnerability of interdependent infrastructures. Simul. Model. Pract. Theory 17, 817–828 (2009) CrossRefGoogle Scholar
  25. 25.
    Dueñas-Osorio, L., Vemuru, S.M.: Cascading failures in complex infrastructure systems. Struct. Saf. 31, 157–167 (2009) CrossRefGoogle Scholar
  26. 26.
    Wang, J.W., Rong, L.L.: Robustness of the western United States power grid under edge attack strategies due to cascading failures. Saf. Sci. 49, 807–812 (2011) CrossRefGoogle Scholar
  27. 27.
    Kinney, R., Crucitti, P., Albert, R., Latora, V: Modeling cascading failures in the North American power grid. Eur. Phys. J. B 46, 101–107 (2005) CrossRefGoogle Scholar
  28. 28.
    Solé, R.V., Rosas-Casals, M., Corominas-Murtra, B., Valverde, S.: Robustness of the European power grids under intentional attack. Phys. Rev. E 77, 026102 (2008) CrossRefGoogle Scholar
  29. 29.
    Latora, V., Marchiori, M.: Vulnerability and protection of infrastructure networks. Phys. Rev. E 71, 015103(R) (2005) CrossRefGoogle Scholar
  30. 30.
    Buzna, L., Peters, K., Ammoser, H., Kühnert, C., Helbing, D.: Efficient response to cascading disaster spreading. Phys. Rev. E 75, 056107 (2007) CrossRefGoogle Scholar
  31. 31.
    Rezaei, B.A., Sarshar, N., Roychowdhury, V.P.: Disaster management in power law networks: recovery from and protection against intentional attacks. Physica A 381, 497–514 (2007) CrossRefGoogle Scholar
  32. 32.
    Ouyang, M., Fei, Q., Yu, M.H., Wang, G.X., Luan, E.J.: Effects of redundant systems on controlling the disaster spreading in networks. Simul. Model. Pract. Theory 17, 390–397 (2009) CrossRefGoogle Scholar
  33. 33.
    Yang, R., Wang, W.X., Lai, Y.C., Chen, G.: Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112 (2009) CrossRefGoogle Scholar
  34. 34.
    Peters, K., Buzna, L., Helbing, D.: Modelling of cascading effects and efficient response to disaster spreading in complex networks. Int. J. Crit. Infrastructures 4(1/2), 46–62 (2008) CrossRefGoogle Scholar
  35. 35.
    Dou, B.L., Wang, X.G., Zhang, S.Y.: Robustness of networks against cascading failures. Physica A 389, 2310–2317 (2010) CrossRefGoogle Scholar
  36. 36.
    Domingo-Ferrer, J., González-Nicolás, Ú.: Decapitation of networks with and without weights and direction: The economics of iterated attack and defense. Comput. Netw. 55, 119–130 (2011) CrossRefGoogle Scholar
  37. 37.
    US–Canada Power system outage task force.: Final Report on the August 14th Blackout in the United States and Canada [EB/OL]., 31 March 2003
  38. 38.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  40. 40.
    Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Information Security CenterBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.College of MathematicsShandong Institute of Business and TechnologyYantai ShandongChina

Personalised recommendations