Skip to main content
Log in

Hopf bifurcation for a class of fractional differential equations with delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main purpose of this manuscript is to prove the existence of solutions for delay fractional order differential equations (FDE) at the neighborhood of its equilibrium point. After we convert the delay FDE into linear delay FDE by using its equilibrium point, we define the 1:2 resonant double Hopf point set with its characteristic equation. We find the members of this set in different cases. The bifurcation curves for a class of delay FDE are obtained within a differential operator of Caputo type with the lower terminal at −∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, I.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Miller, K.B., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  5. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  6. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  7. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publisher, Inc., Reading (2006)

    Google Scholar 

  8. Mainardi, F., Pagnini, G., Gorenflo, R.: Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6(4), 441–459 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamiltonian formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives - an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Fractional Bloch equation with delay. Comput. Math. Appl. 61(5), 1355–1365 (2007)

    Article  MathSciNet  Google Scholar 

  13. Jarad, F., Abdeljawad (Maraaba), T., Baleanu, D.: Fractional variational principles with delay within Caputo derivatives. Rep. Math. Phys. 65(1), 17–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y.Q., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29, 191–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  17. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  18. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. De Melo, W., Van Strien, S.: One Dimensional Dynamics. Springer, Berlin (1993)

    MATH  Google Scholar 

  20. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  21. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2006)

    Google Scholar 

  22. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizollah Babakhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babakhani, A., Baleanu, D. & Khanbabaie, R. Hopf bifurcation for a class of fractional differential equations with delay. Nonlinear Dyn 69, 721–729 (2012). https://doi.org/10.1007/s11071-011-0299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0299-5

Keywords

Navigation