Nonlinear Dynamics

, Volume 69, Issue 1–2, pp 149–158 | Cite as

Constrained receding horizon controls for nonlinear time-delay systems

  • Han Woong Yoo
  • Young Sam Lee
  • Soohee Han
Original Paper


This paper proposes a constrained receding horizon control (RHC) for a nonlinear time-delay system with input and state delays. The control law is obtained by minimizing a receding horizon cost function with weighting functions of inputs and states on the end portion of the horizon. For stability, a general condition on the weighting functions is presented and its feasibility is illustrated via a certain type of nonlinear time-delay systems. In order to deal with input and state constraints, an invariant set is obtained, where the trajectories of the inputs and the states satisfy given constraints and stay forever under some conditions. It is shown in a numerical example that the proposed RHC guarantees the closed-loop stability for nonlinear time-delay systems while meeting the constraints.


Receding horizon control (RHC) Nonlinear time-delay systems Input and state constraints Terminal weighting function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kwon, W.H., Pearson, A.E.: A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Trans. Autom. Control 22, 838 (1977) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Kwon, W., Pearson, A.E.: On feedback stabilization of time-varying discrete linear systems. IEEE Trans. Autom. Control 23, 479 (1978) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Rawlings, J., Muske, K.: The stability of constrained receding horizon control. IEEE Trans. Autom. Control 38, 1512 (1993) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Lee, J., Kwon, W., Choi, J.: On stability of constrained receding horizon control with finite terminal weighting matrix. Automatica 34(2), 1607 (1998) MATHCrossRefGoogle Scholar
  5. 5.
    Kwon, W., Kim, K.B.: On stabilizing receding horizon control for linear continuous time-invariant systems. IEEE Trans. Autom. Control 45(7), 1329 (2000) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bitmead, R., Gevers, M., Wertz, V.: Adaptive Optimal Control: The Thinking Man’s GPC. Prentice Hall, New York (1990) MATHGoogle Scholar
  7. 7.
    Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407 (1999) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Keerthi, S., Gilbert, E.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems. J. Optim. Theory Appl. 57, 265 (1988) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans. Autom. Control 35(7), 814 (1990) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Autom. Control 38(11), 1623 (1993) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nicolao, G.D., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Trans. Autom. Control 43(7), 1030 (1998) MATHCrossRefGoogle Scholar
  12. 12.
    Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205 (1998) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Wang, Z.H.: An iteration method for calculating the periodic solution of time-delay systems after a Hopf bifurcation. Nonlinear Dyn. 53(1–2), 1 (2008) MATHCrossRefGoogle Scholar
  14. 14.
    Gendelman, O.V.: Nonlinear normal modes in homogeneous system with time delays. Nonlinear Dyn. 52(4), 367 (2008) MATHCrossRefGoogle Scholar
  15. 15.
    Ghosh, D.: Nonlinear active observer-based generalized synchronization in time-delayed systems. Nonlinear Dyn. 59(1–2), 289 (2010) MATHCrossRefGoogle Scholar
  16. 16.
    Krasovskii, N.: On analytical constructing of an optimal regulator for systems with time lag. Prikl. Mat. Meh. 26, 39 (1962) MathSciNetGoogle Scholar
  17. 17.
    Eller, D.H., Aggarwal, J.K., Banks, H.T.: Optimal control of linear time-delay systems. IEEE Trans. Autom. Control 14(6), 678 (1969) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Aggarwal, J.K.: Computation of optimal control for time-delay systems. IEEE Trans. Automat. Contr., 683–685 (1970) Google Scholar
  19. 19.
    Koivo, H., Lee, E.: Controller synthesis for linear systems with retarded state and control variables and quadratic cost. Automatica 8, 203 (1972) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kolmanovskii, V.B., Shaikhet, L.E.: Control of Systems with Aftereffect. Transacttions of Mathematical Monographs, vol. 157. AMS, Providence (1996) Google Scholar
  21. 21.
    Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Application of Functional Differential Equations. Kluwer Academic, Dordrecht (1999) Google Scholar
  22. 22.
    Park, J.H., Yoo, H.W., Han, S.H., Kwon, W.H.: Receding horizon control for input delayed systems. IEEE Trans. Autom. Control 53(7), 1746 (2008) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kwon, W.H., Lee, Y.S., Han, S., Ahn, C.K.: Receding horizon predictive control for nonlinear time-delay systems. In: Workshop on Non-linear Predictive Control, Oxford (2002) Google Scholar
  24. 24.
    Kwon, W.H., Lee, Y.S., Han, S.H.: General receding horizon control for linear time-delay systems. Automatica 40(9), 1603 (2004) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Yoo, H.W., Lee, Y.S., Han, S.: m codes of constrained receding horizon controls for nonlinear time delay systems (2009).,id:crhc,password:nldelay

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Dutch Institute of Systems and ControlDelftThe Netherlands
  2. 2.Department of Electrical Engr.Inha Univ.IncheonKorea
  3. 3.Department of Electrical Engr.Konkuk Univ.SeoulKorea

Personalised recommendations