Advertisement

Nonlinear Dynamics

, Volume 68, Issue 1–2, pp 1–5 | Cite as

Application of quasi-continuum models for perturbation analysis of discrete kinks

  • Igor V. Andrianov
  • Elena G. Kholod
  • Dieter Weichert
Original Paper

Abstract

Here, we study a relation between discrete and continuum models on an example of the sine-Gordon and Φ 4 equations. The analysis of various receptions of continualization in a linear case is carried out. The best approach allowing describing all spectrum of the discrete one-dimensional medium is chosen. Also, the nonlinear discrete sine-Gordon and Φ 4 models are analyzed. The possibility of improvement of the known continuum approximations of these equations is shown.

Keywords

Kink Improved continuum model Sine-Gordon equation Φ4 model Padé approximants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braun, O.M., Kivshar, Y.S.: The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Springer, Berlin (2004) MATHGoogle Scholar
  2. 2.
    Scott, A.: Nonlinear Science: Emergence and Dynamics of Coherent Structures, 2nd edn. Oxford University Press, London (2003) MATHGoogle Scholar
  3. 3.
    Flach, S., Kladko, K.: Perturbation analysis of weakly discrete kinks. Phys. Rev. E 54, 2912–2916 (1996) CrossRefGoogle Scholar
  4. 4.
    Flach, S., Willis, C.R.: Asymptotic behavior of one-dimensional nonlinear discrete kink-bearing systems in the continuum limit: Problem of nonuniform convergence. Phys. Rev. E 47, 4447–4456 (1993) CrossRefGoogle Scholar
  5. 5.
    Hobart, R.: Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944–1948 (1965) CrossRefGoogle Scholar
  6. 6.
    Joos, B.: Properties of solitons in the Frenkel-Kontorova model. Solid State Commun. 42, 709–713 (1982) CrossRefGoogle Scholar
  7. 7.
    Andrianov, I.V., Awrejcewicz, J.: Continuous models for 1D discrete media valid for higher-frequency domain. Phys. Lett. A 345, 55–62 (2005) MATHCrossRefGoogle Scholar
  8. 8.
    Andrianov, I.V., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media. Math. Probl. Eng. (2010). article ID 986242 Google Scholar
  9. 9.
    Slepyan, L.I.: Non-steady-state Elastic Waves. Sudostroyenie, Leningrad (1972) Google Scholar
  10. 10.
    Filimonov, A.M.: Continuous approximations of difference operators. J. Differ. Equ. Appl. 2, 411–422 (1996) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Metrikine, A.V.: On causality of the gradient elasticity models. J. Sound Vib. 297, 727–742 (2006) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Collins, M.A.: A quasi-continuum approximation for solitons in an atomic chain. Chem. Phys. Lett. 77, 342–347 (1981) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rosenau, Ph.: Hamiltonian dynamics of dense chains and lattices: or how to correct the continuum. Phys. Lett. A 311, 39–52 (2003) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Vasiliev, A.A., Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Igor V. Andrianov
    • 1
  • Elena G. Kholod
    • 2
  • Dieter Weichert
    • 1
  1. 1.Department of General Mechanics, RWTHAachen UniversityAachenGermany
  2. 2.Department of Higher MathematicsDnipropetrovs’k University of Economics and LawDnipropetrovs’kUkraine

Personalised recommendations