Skip to main content
Log in

A model reference robust multiple-surfaces design for tracking control of radial pneumatic motion systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A robust model reference backstepping (multiple-surfaces) controller is proposed for radial pneumatic motor motion systems with variable inlet pressure and mismatched uncertainties (time-varying payload). A radial pneumatic motor is first modeled by a non-autonomous equation with consideration of a ball screw table. A practical integral action and robust action are included in the backstepping design to compensate for the disturbance, mismatched uncertainty, and to eliminate the steady state error. The motion system is proved to have asymptotically stable performance and the experimental results show that the proposed controller is able to track the reference model output signal and maintain steady-state error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y., Nishi, A.: Low-pressure air motor for wall-climbing robot actuation. Mechatronics 13(4), 377–392 (2003)

    Article  Google Scholar 

  2. Pandian, S.R., Takemura, F., Hayakawa, Y., Kawamura, S.: Control performance of an air motor-can air motors replace electric motors. In: IEEE International Conference, vol. 1, pp. 518–524 (1999)

    Google Scholar 

  3. Tokhi, M.O., Al-Miskiry, M., Brisland, M.: Real-time control of air motors using a pneumatic H-bridge. Control Eng. Pract. 9(4), 449–457 (2001)

    Article  Google Scholar 

  4. Wang, J., Pu, J., Moore, P.R.: Modeling study and servo-control of air motor systems. Int. J. Control 71(3), 459–476 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Marumo, R., Tokhi, M.O.: Neural-model reference control of an air motor. In: 7th Africon Conference in Africa, Gaborone, Botswana, vol. 1, pp. 467–472 (2004)

    Chapter  Google Scholar 

  6. Song, J., Ishida, Y.: A robust sliding mode control for pneumatic servo systems. Int. J. Eng. Sci. 35(8), 711–723 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mahgoub, H.M., Craighead, I.A.: Development of a microprocessor based control system for a pneumatic rotary actuator. Mechatronics 5(5), 541–560 (1995)

    Article  Google Scholar 

  8. Šitum, Ž., Žilić, T., Essert, M.: High speed solenoid valves in pneumatic servo applications. In: 2007 Mediterranean Conference on Control and Automation, Athens, Greece, pp. 1–6 (2007)

    Google Scholar 

  9. Nguyen, T., Leavitt, J., Jabbari, F., Bobrow, J.E.: Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron. 12(2), 216–219 (2007)

    Article  Google Scholar 

  10. Ursu, I., Ursu, F., Popescu, F.: Backstepping design for controlling electrohydraulic servos. J. Franklin Inst. 343(1), 94–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pan, H., Wong, H., Kapila, V., Queiroz, D.M.S.: Experimental validation of a non-linear backstepping liquid level controller for a state coupled two tank system. Control Eng. Pract. 13(1), 27–40 (2005)

    Article  Google Scholar 

  12. Li, G., Khajepour, A.: Robust control of a hydraulically driven flexible arm using backstepping technique. J. Sound Vib. 280(3–5), 759–775 (2005)

    Article  MathSciNet  Google Scholar 

  13. Ye, J.: Tracking control for nonholonomic mobile robots: integrating the analog neural network into the backstepping technique. Neurocomputing 71(16–18), 3373–3378 (2008)

    Article  Google Scholar 

  14. Tan, Y.L., Chang, J., Tan, H.L., Hu, J.: Integral backstepping control and experimental implementation for motion system. In: Proceedings of the 2000 IEEE International Conference on Control Application, Anchorage, AK, pp. 25–27 (2000)

    Google Scholar 

  15. Lin, F.J., Shen, P.H., Hsu, S.P.: Adaptive backstepping sliding mode control for linear induction motor drive. IEEE Proc. Electr. Power Appl. 193(4), 184–194 (2002)

    Article  Google Scholar 

  16. Lu, C.H., Hwang, Y.R., Shen, Y.T.: Backstepping sliding-mode control for a pneumatic control system. J. Syst. Control Eng. 224(6), 763–770 (2010)

    Google Scholar 

  17. Lu, C.H., Hwang, Y.R., Shen, Y.T.: Backstepping sliding mode tracking control of a vane-type air motor XY table motion system. ISA Trans. 50, 278–286 (2011)

    Article  Google Scholar 

  18. Wang, J., Pu, J., Moore, P.: A practical control strategy for servo-pneumatic actuator systems. Control Eng. Pract. 7(12), 1483–1488 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hua Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, CH., Hwang, YR. A model reference robust multiple-surfaces design for tracking control of radial pneumatic motion systems. Nonlinear Dyn 67, 2585–2597 (2012). https://doi.org/10.1007/s11071-011-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0171-7

Keywords

Navigation