Nonlinear Dynamics

, Volume 67, Issue 3, pp 2101–2109 | Cite as

Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos

  • Blaž Krese
  • Edvard Govekar
Original Paper


We apply the recently improved version of the 0–1 test for chaos to real experimental time series of laser droplet generation process. In particular two marginal regimes of dripping are considered: spontaneous and forced dripping. The outcomes of the test reveal that both spontaneous and forced dripping time series can be characterized as chaotic, which coincides with the previous analysis based on nonlinear time series analysis.


Droplets Dripping regimes Experimental data 0–1 test for chaos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lui, H.: Science and Engineering of Droplets. Noyes, New York (2000) Google Scholar
  2. 2.
    Govekar, E., Jerič, A., Weigl, M., Schmidt, M.: Laser droplet generation: application to droplet joining. CIRP Ann. 58, 205–208 (2009) CrossRefGoogle Scholar
  3. 3.
    Kokalj, T., Klemenčič, J., Mužič, P., Grabec, I., Govekar, E.: Analysis of the laser droplet formation process. J. Manuf. Sci. Eng. 128, 307–314 (2006) CrossRefGoogle Scholar
  4. 4.
    Krese, B., Perc, M., Govekar, E.: The dynamics of laser droplet generation. Chaos 20, 013129-1-7 (2010) CrossRefGoogle Scholar
  5. 5.
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley-Interscience, New York (1995) CrossRefMATHGoogle Scholar
  6. 6.
    Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996) CrossRefMATHGoogle Scholar
  7. 7.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  8. 8.
    Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. Eur. J. Phys. 26, 205–215 (2005) CrossRefGoogle Scholar
  9. 9.
    Schreiber, T.: Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308, 1–64 (1999) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Benko, T.P., Perc, M.: Nonlinearities in mating sounds of American crocodiles. Biosystems 97, 154–159 (2009) CrossRefGoogle Scholar
  11. 11.
    Benko, T.P., Perc, M.: Singing of Neoconocephalus robustus as an example of deterministic chaos in insects. J. Biosci. 32, 797–804 (2007) CrossRefGoogle Scholar
  12. 12.
    Benko, T.P., Perc, M.: Deterministic chaos in sounds of Asian cicadas. J. Biol. Syst. 14, 555–566 (2006) CrossRefMATHGoogle Scholar
  13. 13.
    Perc, M.: Nonlinear time series analysis of the human electrocardiogram. Eur. J. Phys. 26, 757–768 (2005) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Perc, M.: The dynamics of human gait. Eur. J. Phys. 26, 525–534 (2005) CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Gradišek, J., Govekar, E., Grabec, I.: Using coarse-grained entropy rate to detect chatter in cutting. J. Sound Vib. 214, 941–952 (1998) CrossRefGoogle Scholar
  16. 16.
    Litak, G., Sen, A.K., Syta, A.: Intermittent and chaotic vibrations in a regenerative cutting process. Chaos Solitons Fractals 41, 2115–2122 (2009) CrossRefGoogle Scholar
  17. 17.
    Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A 460, 603–611 (2004) CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Schreiber, T.: Detecting and analysing nonstationarity in a time series with nonlinear cross-predictions. Phys. Rev. Lett. 78, 843–846 (1997) CrossRefGoogle Scholar
  19. 19.
    Kaplan, D.T., Glass, L.: Direct test for determinism in a time series. Phys. Rev. Lett. 68, 427–430 (1992) CrossRefGoogle Scholar
  20. 20.
    Falconer, I., Gottwald, G.A., Melbourne, I., Wormnes, K.: Application of the 0–1 test for chaos to experimental data. SIAM J. Appl. Dyn. Syst. 6, 395–402 (2007) CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8, 129–145 (2009) CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Krese, B., Perc, M., Govekar, E.: Experimental observation of a chaos-to-chaos transition in laser droplet generation. Int. J. Bifurc. Chaos (in press). doi: 10.1142/S0218127411029367
  23. 23.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985) CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Eckmann, J.-P., Kamphorst, S.O., Ruelle, D., Ciliberto, S.: Liapunov exponents from time series. Phys. Rev. A 34, 4971–4979 (1986) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986) CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992) CrossRefGoogle Scholar
  27. 27.
    Gottwald, G.A., Melbourne, I.: Testing for chaos in deterministic systems with noise. Physica D 212, 100–110 (2005) CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Gottwald, G.A., Melbourne, I.: On the validity of the 0–1 test for chaos. Nonlinearity 22, 1367–1382 (2009) CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Litak, G., Syta, A., Wiercigroch, M.: Identification of chaos in a cutting process by the 0–1 test. Chaos Solitons Fractals 40, 2095–2101 (2009) CrossRefGoogle Scholar
  30. 30.
    Syta, A., Litak, G.: Stochastic description of the deterministic Ricker’s population model. Chaos Solitons Fractals 37, 262–268 (2008) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratory of Synergetics, Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations