Advertisement

Nonlinear Dynamics

, Volume 67, Issue 3, pp 1729–1736 | Cite as

Adaptive projective synchronization of dynamical networks with distributed time delays

  • Pengchun Rao
  • Zhaoyan Wu
  • Meng Liu
Original Paper

Abstract

In this paper, the adaptive projective synchronization of dynamical network with distributed time delays is investigated. Network with unknown topology and network with both unknown topology and system parameters of node dynamics are considered respectively. Based on Lyapunov stability theory and LaSalle’s invariance principle, the sufficient conditions for achieving projective synchronization are obtained. Numerical examples are provided to show the effectiveness of the proposed method.

Keywords

Projective synchronization Distributed time delays Dynamical network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  2. 2.
    Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Li, C., Sun, W., Kurths, J.: Synchronization between two coupled complete networks. Phys. Rev. E 76, 046204 (2007) Google Scholar
  4. 4.
    Zhou, J., Lu, J.A., Lü, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44, 996–1003 (2008) CrossRefGoogle Scholar
  5. 5.
    Tang, H., Chen, L., Lu, J.A., Tse, C.: Adaptive synchronization between two complex networks with nonidentical topological structures. Physica A 387, 5623–5630 (2008) CrossRefGoogle Scholar
  6. 6.
    He, G., Yang, J.: Adaptive synchronization in nonlinearly coupled dynamical networks. Chaos Solitons Fractals 38, 1254–1259 (2008) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Lu, J., Cao, J.: Adaptive synchronization in tree-like dynamical networks. Nonlinear Anal., Real World Appl. 8, 1252–1260 (2007) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Zhou, J., Xiang, L., Liu, Z.: Global synchronization of generalized complex networks with mixed coupling delays. Physica A 385, 729–742 (2007) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Sharma, B.B., Kar, I.N.: Observer-based synchronization scheme for a class of chaotic systems using contraction theory. Nonlinear Dyn. 63, 429–445 (2011) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Amritkar, R.E., Hu, C.K.: Synchronized state of coupled dynamics on time-varying networks. Chaos 16, 015117 (2006) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks. IEEE Trans. Circuits Syst. I 50, 1381–1390 (2003) CrossRefGoogle Scholar
  12. 12.
    Wang, X., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 187–192 (2002) CrossRefGoogle Scholar
  13. 13.
    Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Lü, L., Li, C.: Generalized synchronization of spatiotemporal chaos in a weighted complex network. Nonlinear Dyn. 63, 699–710 (2011) CrossRefGoogle Scholar
  15. 15.
    Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042–3045 (1999) CrossRefGoogle Scholar
  16. 16.
    Jia, Z., Lu, J.A., Deng, G., Zhang, Q.: Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters. Chin. Phys. B 16, 1246–1251 (2007) CrossRefGoogle Scholar
  17. 17.
    Li, R.H., Xu, W., Li, S.: Adaptive generalized projective synchronization in different chaotic systems based on parameter identification. Phys. Lett. A 367, 199–206 (2007) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Feng, C.F.: Projective synchronization between two different time-delayed chaotic systems using active control approach. Nonlinear Dyn. 62, 453–459 (2010) CrossRefMATHGoogle Scholar
  19. 19.
    Li, C.D., Liao, X.F., Yang, X.F., Huang, T.W.: New algebraic conditions for global exponential stability of delayed recurrent neural networks. Chaos 15, 043103 (2005) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Chavez, M., Hwang, D.-U., Amann, A., Hentschel, H.G.E., Boccaletti, S.: Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett. 94, 218701 (2005) CrossRefGoogle Scholar
  21. 21.
    Zhou, J., Chen, T.: Synchronization in general complex delayed dynamical networks. IEEE Trans. Circuits Syst. I 53, 733–744 (2006) CrossRefGoogle Scholar
  22. 22.
    Zheng, S., Bi, Q., Cai, G.: Adaptive projective synchronization in complex networks with time-varying coupling delay. Phys. Lett. A 373, 1553–1559 (2009) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Li, C.H., Yang, S.Y.: Synchronization in linearly coupled dynamical networks with distributed time delays. Int. J. Bifurc. Chaos Appl. Sci. Eng. 18, 2039–2047 (2008) CrossRefMATHGoogle Scholar
  24. 24.
    Liu, H., Lu, J., Zhang, Q.: Projectively lag synchronization and uncertain parameters identification of a new hyperchaotic system. Nonlinear Dyn. 62, 427–435 (2010) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hassan, K.K.: Nonlinear Systems. Prentice Hall, New York (2002) MATHGoogle Scholar
  26. 26.
    Robinson, R.C.: An Introduction to Dynamical Systems: Continuous and Discrete. Pearson Education, Upper Saddle River (2004) MATHGoogle Scholar
  27. 27.
    Jia, Y.: Robust H Control. Science Press, Beijing (2007) Google Scholar
  28. 28.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 659–661 (2002) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceJiangxi Normal UniversityNanchangChina
  2. 2.Jiaxing Nanyang Vocational and Technical CollegeJiaxingChina

Personalised recommendations