Nonlinear Dynamics

, Volume 67, Issue 2, pp 1467–1479 | Cite as

Nonlinear vibrations of rotating thin circular cylindrical shell

Original Paper


Nonlinear vibrations of thin circular cylindrical shells are investigated in this paper. Based on Love thin shell theory, the governing partial differential equations of motion for the rotating circular cylindrical shell are formulated using Hamilton principle. Taking into account the clamped-free boundary conditions, the partial differential system is truncated by using the Galerkin method. Sequentially, the effects of temperature, geometric parameters, circumferential wave number, axial half wave number and rotating speed on the nature frequency of the rotating circular cylindrical shell are studied. The dynamic responses of the rotating circular cylindrical shell are also investigated in time domain and frequency domain. Then, the effects of nonlinearity, excitation and damping on frequency responses of steady solution are investigated.


Circular cylindrical shell Nonlinear vibrations Frequency response Clamped-free boundary conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amabili, M., Paidoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56(4), 349–381 (2003) CrossRefGoogle Scholar
  2. 2.
    Goncalves, P.B., Silva, F.M.A., DelPrado, Z.J.G.N.: Transient and steady state stability of cylindrical shells under harmonic axial loads. Int. J. Non-Linear Mech. 42, 58–70 (2007) CrossRefMATHGoogle Scholar
  3. 3.
    Pellicano, F., Amabili, M., Paidoussis, M.P.: Effect of the geometry on the non-linear vibration of circular cylindrical shells. Int. J. Non-Linear Mech. 37, 1181–1198 (2002) CrossRefMATHGoogle Scholar
  4. 4.
    Rougui, M., Moussaoui, F., Benamar, R.: Geometrically non-linear free and forced vibrations of simply supported circular cylindrical shells: A semi-analytical approach. Int. J. Non-Linear Mech. 42, 1102–1115 (2007) CrossRefMATHGoogle Scholar
  5. 5.
    Amabili, M.: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib. 264, 1091–1125 (2003) CrossRefGoogle Scholar
  6. 6.
    Bryan, G.H.: On the beats in the vibration of revolving cylinder or bell. Math. Proc. Camb. Philos. Soc. 7, 101–111 (1890) Google Scholar
  7. 7.
    Lam, K.Y., Loy, C.T.: Analysis of rotating laminated cylindrical shells by different thin shell theories. J. Sound Vib. 186(1), 23–35 (1995) CrossRefMATHGoogle Scholar
  8. 8.
    Loy, C.T., Lam, K.Y.: Vibration of rotating thin cylindrical panels. Appl. Acoust. 46, 327–343 (1995) CrossRefGoogle Scholar
  9. 9.
    Lam, K.Y., Loy, C.T.: Free vibrations of a rotating multi-layered cylindrical shell. Int. J. Solids Struct. 32(5), 647–663 (1995) CrossRefMATHGoogle Scholar
  10. 10.
    Rand, O., Stavsky, Y.: Response and eigenfrequencies of rotating composite cylindrical shells. J. Sound Vib. 193(1), 65–77 (1996) CrossRefGoogle Scholar
  11. 11.
    Lam, K.Y., Loy, C.T.: On vibrations of thin rotating laminated composite cylindrical shells. Compos. Eng. 4(11), 1153–1167 (1994) CrossRefGoogle Scholar
  12. 12.
    Zhang, X.M.: Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach. Comput. Methods Appl. Mech. Eng. 191, 2029–2043 (2002) Google Scholar
  13. 13.
    Lee, Y.S., Kim, Y.W.: Nonlinear free vibration analysis of rotating hybrid cylindrical shells. Comput. Struct. 70, 161–168 (1999) CrossRefMATHGoogle Scholar
  14. 14.
    Huang, S.C., Hsu, B.S.: Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load. J. Sound Vib. 136, 215–228 (1990) CrossRefGoogle Scholar
  15. 15.
    Ng, T.Y., Lam, K.Y.: Vibration and critical speed of a rotating cylindrical shell subjected to axial loading. Appl. Acoust. 56, 273–282 (1999) CrossRefGoogle Scholar
  16. 16.
    Ng, T.Y., Lam, K.Y., Reddy, J.N.: Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads. J. Sound Vib. 214, 513–529 (1998) CrossRefGoogle Scholar
  17. 17.
    Pellicano, F., Amabili, M.: Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads. Int. J. Solids Struct. 40, 3229–3251 (2003) CrossRefMATHGoogle Scholar
  18. 18.
    Avramov, K.V., Mikhlin, Y.V., Kurilov, E.: Asymptotic analysis of nonlinear dynamics of simply supported cylindrical shells. Nonlinear Dyn. 47, 331–352 (2007) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Swamy Naidu, N.V., Sinha, P.K.: Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments. Compos. Struct. 77, 475–483 (2007) CrossRefGoogle Scholar
  20. 20.
    Amabili, M., Reddy, J.N.: A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int. J. Non-Linear Mech. 45, 409–418 (2010) CrossRefGoogle Scholar
  21. 21.
    Li, X.B.: Study on free vibration analysis of circular cylindrical shells using wave propagation. J. Sound Vib. 311, 667–682 (2008) CrossRefGoogle Scholar
  22. 22.
    Lam, K.Y., Loy, C.T.: Influence of boundary conditions for a thin laminated rotating cylindrical shell. Compos. Struct. 41, 215–228 (1998) CrossRefGoogle Scholar
  23. 23.
    Lee, Y.S., Kim, Y.W.: Effect of boundary conditions on natural frequencies for rotating composite cylindrical shells with orthogonal stiffeners. Adv. Eng. Softw. 30, 649–655 (1999) CrossRefGoogle Scholar
  24. 24.
    Zhang, X.M.: Vibration analysis of cross-ply laminated composite cylindrical shells using the wave propagation approach. Appl. Acoust. 62, 1221–1228 (2001) CrossRefGoogle Scholar
  25. 25.
    Jafari, A.A., Khalili, S.M.R., Azarafza, R.: Transient dynamic response of composite circular cylindrical shells under radial impulse load and axial compressive loads. Thin-Walled Struct. 43, 1763–1786 (2005) CrossRefGoogle Scholar
  26. 26.
    Jansen, E.L.: Effect of boundary conditions on nonlinear vibration and flutter of laminated cylindrical shells. J. Vib. Acoust. 130, 1–8 (2008) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1952) Google Scholar
  28. 28.
    Amabili, M., Pellicano, F., Paidoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: large-amplitude vibrations without flow. J. Sound Vib. 228(5), 1103–1124 (1999) CrossRefGoogle Scholar
  29. 29.
    Wang, Y.Q., Guo, X.H., Li, Y.G., Li, J.: Nonlinear traveling wave vibration of a circular cylindrical shell subjected to a moving concentrated harmonic force. J. Sound Vib. 329, 338–392 (2010) CrossRefGoogle Scholar
  30. 30.
    Lam, K.Y., Loy, C.T.: Influence of boundary conditions and fibre orientation on the natural frequencies of thin orthotropic laminated cylindrical shells. Compos. Struct. 31(1), 21–30 (1995) CrossRefGoogle Scholar
  31. 31.
    Bhimaraddi, A.: Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates. J. Sound Vib. 162, 457–470 (1999) CrossRefGoogle Scholar
  32. 32.
    Nosir, A., Reddy, J.N.: A study of non-linear dynamic equations of higher-order deformation plate theories. Int. J. Non-Linear Mech. 26, 233–249 (1991) CrossRefGoogle Scholar
  33. 33.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Precision Instruments and MechanologyTsinghua UniversityBeijingChina

Personalised recommendations