Nonlinear Dynamics

, Volume 67, Issue 2, pp 1397–1406 | Cite as

Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch

  • Shun Chen
  • Jinde Cao
Original Paper


In this paper, the projective synchronization of neural networks with mixed time-varying delays and parameter mismatch is discussed. Due to parameter mismatch and projective factor, complete projective synchronization cannot be achieved. Therefore, a new weak projective synchronization scheme is proposed to ensure that coupled neural networks are in a state of synchronization with an error level. Several criteria are derived and the error level is estimated by applying a generalized Halanay inequality and matrix measure. Finally, a numerical example is given to verify the efficiencies of theoretical results.


Projective synchronization Neural networks Delay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. In: Academic, Physics, Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge (2001) Google Scholar
  2. 2.
    Pecora, L.M., Carroll, T.L.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991) CrossRefGoogle Scholar
  3. 3.
    Lu, J., Cao, J., Ho, D.W.C.: Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay. IEEE Trans. Circuits Syst. 55(5), 1347–1356 (2008) CrossRefMathSciNetGoogle Scholar
  4. 4.
    He, W., Cao, J.: Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn. 55(1), 55–65 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    He, W., Cao, J.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372(4), 408–416 (2008) CrossRefzbMATHGoogle Scholar
  6. 6.
    Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76(11), 1816–1819 (1996) CrossRefGoogle Scholar
  7. 7.
    He, W., Cao, J.: Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure. Chaos 19, 013118 (2009) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Li, C., Liao, X., Wong, K.: Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D 194(3–4), 187–202 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Sun, Y., Cao, J.: Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation. Phys. Lett. A 364(3–4), 277–285 (2007) CrossRefzbMATHGoogle Scholar
  10. 10.
    Corron, N.J., Blakely, J.N., Pethel, S.D.: Lag and anticipating synchronization without time-delay coupling. Chaos 15, 023110 (2005) CrossRefGoogle Scholar
  11. 11.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193–4196 (1997) CrossRefGoogle Scholar
  12. 12.
    Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042–3045 (1999) CrossRefGoogle Scholar
  13. 13.
    Ghosh, D.: Generalized projective synchronization in time-delayed systems: nonlinear observer approach. Chaos 19, 013102 (2009) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Yan, J., Li, C.: Generalized projective synchronization of a unified chaotic system. Chaos Solitons Fractals 26(4), 1119–1124 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Li, G.: Generalized projective synchronization of two chaotic systems by using active control. Chaos Solitons Fractals 30(1), 77–82 (2006) CrossRefzbMATHGoogle Scholar
  16. 16.
    Du, H., Zeng, Q., Wang, C., Ling, M.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal., Real World Appl. 11(2), 705–712 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Liu, Y., Wang, Z., Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19(5), 667–675 (2006) CrossRefzbMATHGoogle Scholar
  18. 18.
    Song, Q., Cao, J., Zhao, Z.: Periodic solutions and its exponential stability of reaction-diffusion recurrent neural networks with continuously distributed delays. Nonlinear Anal., Real World Appl. 7(1), 65–80 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Liang, J., Cao, J.: Global asymptotic stability of bidirectional associative memory networks with distributed delays. Appl. Math. Comput. 152(2), 415–424 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Zhao, H.: Global asymptotic stability of Hopfield neural network involving distributed delays. Neural Netw. 17(1), 47–53 (2004) CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhao, H.: Existence and global attractivity of almost periodic solution for cellular neural network with distributed delays. Appl. Math. Comput. 154(3), 683–695 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Ruan, S., Filfil, R.S.: Dynamics of a two-neuron system with discrete and distributed delays. Physica D 191(3–4), 323–342 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Wang, Z., Liu, Y., Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays. Phys. Lett. A 345(4–6), 299–308 (2005) CrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, Z., Liu, Y., Fraser, K., Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. A 354(4), 288–297 (2006) CrossRefzbMATHGoogle Scholar
  25. 25.
    Johnson, G.A., Mar, D.J., Carroll, T.L., Pecora, L.M.: Synchronization and imposed bifurcations in the presence of large parameter mismatch. Phys. Rev. Lett. 80(18), 3956–3959 (1998) CrossRefGoogle Scholar
  26. 26.
    Li, X., Pan, W., Luo, B., Ma, D.: Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization. IEEE J. Quantum Electron. 42(9), 953–960 (2006) CrossRefGoogle Scholar
  27. 27.
    Chen, Y., Cao, L., Sun, M.: Robust modified function projective synchronization in network with unknown parameters and mismatch parameters. Int. J. Nonlinear Sci. 10(1), 17–23 (2010) zbMATHMathSciNetGoogle Scholar
  28. 28.
    Shen, L., Liu, W., Ma, J.: Robust function projective synchronization of a class of uncertain chaotic systems. Chaos Solitons Fractals 42(2), 1292–1296 (2009) CrossRefzbMATHGoogle Scholar
  29. 29.
    Vidyasagar, M.: Nonlinear Systems Analysis, 2nd edn. Prentice Hall, Upper Saddle River (1992) zbMATHGoogle Scholar
  30. 30.
    Hom, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge UP, New York (1991) Google Scholar
  31. 31.
    Wen, L., Yu, Y., Wang, W.: Generalized Halanay inequalities for dissipativity of Volterra functional differential equations. J. Math. Anal. Appl. 347(1), 169–178 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Zhang, W., Huang, J., Wei, P.: Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control. Appl. Math. Model. 35(2), 612–620 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Wu, X., Lu, H.: Generalized projective synchronization between two different general complex dynamical networks with delayed coupling. Phys. Lett. A 374(38), 3932–3941 (2010) CrossRefGoogle Scholar
  34. 34.
    Wang, K., Teng, Z., Jiang, H.: Adaptive synchronization of neural networks with time-varying delay and distributed delay. Physica A 387(2–3), 631–642 (2008) CrossRefGoogle Scholar
  35. 35.
    Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, vol. 3, pp. 2805–2810 (2000) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsSoutheast UniversityNanjingChina

Personalised recommendations