Nonlinear Dynamics

, Volume 67, Issue 2, pp 1337–1356 | Cite as

Observer-based model reference adaptive control for unknown time-delay chaotic systems with input nonlinearity

  • Hassan Adloo
  • Navid Noroozi
  • Paknosh Karimaghaee
Original Paper


Existence of unknown time-delay in the systems is a drastic restriction that it can menace the stability criteria and even deteriorate the performance system. This undesired case would be more intensified if that the uncertain input nonlinearity effects are also considered. To handle the input nonlinearities effects (results in dead-zone and/or hysteresis phenomena) and also unknown time-delay in the chaotic systems, this paper presents an observer-based Model Reference Adaptive Control (MRAC) scheme for a class of unknown time-delay chaotic systems with disturbances. This new method is a delay-independent variable-structure control method which is integrated with an observer system. The main task of the proposed approach is to accomplish a perfect tracking procedure such that unknown parameters are adapted via output estimation error. Furthermore, stability of the closed-loop system is achieved by means of the Lyapunov stability theory. Finally, the proposed methods are applied to some famous chaotic systems to verify the effectiveness of the proposed methods.


Chaos control Model reference adaptive control Observer-based system Dead-zone and hysteresis nonlinearity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 164, 1196–1199 (1990) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Lee, K.W., Singh, S.N.: Robust control of chaos in Chua’s circuit based on internal model principle. Chaos Solitons Fractals 31, 1095–1107 (2007) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Wang, Y., Chai, T., Zhang, Y.: State observer-based adaptive fuzzy output-feedback control for a class of uncertain nonlinear systems. Inf. Sci. 180, 5029–5040 (2010) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Nazzal, J.M., Natsheh, A.N.: Chaos control using sliding-mode theory. Chaos Solitons Fractals 33, 695–702 (2007) CrossRefGoogle Scholar
  5. 5.
    Wang, H., Han, Z.Z., Zhang, W., Xie, Q.Y.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Anal., Real World Appl. 10, 715–722 (2009) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Harb, A., Harb, B.: Chaos control of a third-order phase locked loop using backstepping nonlinear controller. Chaos Solitons Fractals 20, 719–723 (2004) CrossRefMATHGoogle Scholar
  7. 7.
    Tian, Y.C., Gao, F.: Adaptive control of chaotic continuous-time systems with delay. Physica D 117, 1–12 (1998) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hua, C., Guan, X.: Robust control of time-delay chaotic systems. Phys. Lett. A 314, 72–80 (2003) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ting, C.S.: An observer-based approach to controlling time-delay chaotic systems via Takagi–Sugeno fuzzy model. Inf. Sci. 177, 4314–4328 (2007) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bowong, S., Tewa, J.J.: Unknown inputs’ adaptive observer for a class of chaotic systems with uncertainties. Math. Comput. Model. 48, 1826–1839 (2008) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Solak, E., Morgül, Ö., Ersoy, U.: Observer-based control of a class of chaotic systems. Phys. Lett. A 279, 47–55 (2001) CrossRefMATHGoogle Scholar
  12. 12.
    Hua, C., Guan, X., Li, X., Shi, P.: Adaptive observer-based control for a class of chaotic systems. Chaos Solitons Fractals 22, 103–110 (2004) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Boulkroune, A., Saad, M.M., Farza, M.: Adaptive fuzzy controller for multivariable nonlinear state time-varying delay systems subject to input nonlinearities. Fuzzy Sets Syst. 164(1), 45–65 (2011) CrossRefMATHGoogle Scholar
  14. 14.
    Hu, Q., Ma, G., Xie, L.: Robust and adaptive variable-structure output feedback control of uncertain systems with input nonlinearity. Automatica 44, 552–559 (2008) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Tarbouriech, S., Prieur, C., Queinnec, I.: Stability analysis for linear systems with input backlash through sufficient LMI conditions. Automatica 46(11), 1911–1915 (2010) CrossRefMATHGoogle Scholar
  16. 16.
    Barreiro, A., Baños, A.: Input–output stability of systems with backlash. Automatica 42, 1017–1024 (2006) CrossRefMATHGoogle Scholar
  17. 17.
    Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans. Syst. Man Cybern. 40, 170–184 (2010) CrossRefGoogle Scholar
  18. 18.
    Liu, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf. Sci. 177, 3901–3917 (2007) CrossRefMATHGoogle Scholar
  19. 19.
    Liu, Y.J., Zhou, N.: Observer-Based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input. ISA Trans. 49, 462–469 (2010) CrossRefGoogle Scholar
  20. 20.
    Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57, 431–439 (2009) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Zhou, N., Liu, Y.J., Tong, S.C.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input. Nonlinear Dyn. 63(4), 771–778 (2010) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Liu, Y.J., Tong, S.C., Wang, W., Li, Y.M.: Observer-based direct adaptive fuzzy control of uncertain nonlinear systems and its applications. Int. J. Control. Autom. Syst. 7, 681–690 (2009) CrossRefGoogle Scholar
  23. 23.
    Noroozi, N., Roopaei, M., Karimaghaee, P., Safavi, A.A.: Simple adaptive variable-structure control for unknown chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15, 707–727 (2010) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Roopaei, M., Sahraei, B.R., Lin, T.C.: Adaptive sliding mode control in a novel class of chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15, 4158–4170 (2010) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2003) Google Scholar
  26. 26.
    Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45, 2427–2432 (2000) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977) CrossRefGoogle Scholar
  28. 28.
    Lu, H., He, Z.: Chaotic behaviors in first order autonomous continuous time systems with delay. IEEE Trans. CAS I 43, 700–702 (1996) CrossRefGoogle Scholar
  29. 29.
    Jiang, Z.P., Praly, L.: Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica 32, 1211–1215 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hassan Adloo
    • 1
  • Navid Noroozi
    • 1
  • Paknosh Karimaghaee
    • 1
  1. 1.Department of Electrical and Computer EngineeringShiraz UniversityShirazIran

Personalised recommendations